Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T08:19:54.816Z Has data issue: false hasContentIssue false

Granites of Edward VII Peninsula, Marie Byrd Land: anorogenic magmatism related to Antarctic-New Zealand rifting

Published online by Cambridge University Press:  03 November 2011

S. D. Weaver
Affiliation:
S. D. Weaver, Department of Geology, University of Canterbury, Christchurch, New Zealand
C. J. Adams
Affiliation:
C. J. Adams, Department of Scientific and Industrial Research, Physical Sciences, Lower Hutt, New Zealand
R. J. Pankhurst
Affiliation:
R. J. Pankhurst, British Antarctic Survey, c/o Natural Environment Research Council, Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, U.K.
I. L. Gibson
Affiliation:
I. L. Gibson, Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Abstract

Syenogranites and monzogranites of Edward VII Peninsula, Marie Byrd Land, represent magmatism associated with continental rifting and the separation of New Zealand from W Antarctica in the mid-Cretaceous. These coarse-grained, leucocratic, subsolvus biotite granites occur as five small plutons cutting Lower Palaeozoic metasediments. Petrographic features include the predominance of microcline perthite over albite, bipyramidal smoky quartz, red-brown biotite and accessory ilmenite, zircon, apatite, monazite and fluorite. Enclaves are absent and miarolitic cavites are rare.

The granites are a weakly peraluminous, potassic, and highly fractionated suite with high concentrations of Rb, Nb, Y, HREE and F in the most evolved compositions. REE patterns vary from LREE-enriched (CeN/YbN = 8·4), to flat REE patterns (CeN/YbN = 1·1) with large negative Eu anomalies (Eu/Eu* = 0·02). Initial 87Sr/86Sr ratios are 0·7116-0·7206 and initial εNd values are −5·5 to −7·7. Generalised fractionation trends for the suite are explicable in terms of the modal mineralogy. Monazite crystallisation exerted a predominant control on LREE concentrations.

The geochemistry of the Edward VII Peninsula granites suggests an infracrustal I-type source, and regionally available Devonian-Carboniferous I-type granodiorites and tonalites satisfy the isotopic constraints. The granites classify as A-type (preferred term A-subtype) and Within-Plate Granites on standard diagrams, but the least fractionated rocks clearly indicate the I-type, Volcanic Arc Granite geochemical signatures of their inferred crustal sources.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J. 1986. Geochronological studies of the Swanson Formation of Marie Byrd Land, West Antarctica, and correlation with northern Victoria Land, East Antarctica, and South Island, New Zealand. NZ J GEOL GEOPHYS 29, 345–58.CrossRefGoogle Scholar
Adams, C. J. 1987. Geochronology of granite terranes in the Ford Ranges, Marie Byrd Land, West Antarctica. NZ J GEOL GEOPHYS 30, 5172.CrossRefGoogle Scholar
Adams, C. J. & Weaver, S. D. 1990. Age and correlation of metamorphic basement in Edward VII Peninsula, Marie Byrd Land, West Antarctica, and correlation with Northern Victoria Land and Southern New Zealand. ZBL GEOL PALAONT TEIL I 12, 7586.Google Scholar
Adams, C. J., Broady, P., Cleary, P. J. & Weaver, S. D. 1989. Geological and biological expedition to Edward VII Peninsula, Marie Byrd Land, West Antarctica—1987/88: Field observations and initial results. NZ ANTARCTIC RECORD 9, 533.Google Scholar
Anderson, J. L. 1983. Proterozoic anorogenic granite plutonism of North America. GEOL SOC AM MEM 161, 133–54.Google Scholar
Arculus, R. J. 1987. The significance of source versus process in the tectonic controls of magma genesis. In Weaver, S. D. & Johnson, R. W. (eds) Tectonic controls on magma chemistry, 1-12. Amsterdam: Elsevier.Google Scholar
Bradshaw, J. D., Dalziel, I. W. D., Venere, V.Di, Mukasa, S. B., Pankhurst, R. J., Storey, B. C. & Weaver, S. D. 1991. The southern rim of the Pacific: new work on the pre-Cenozoic rocks of Marie Byrd Land. ABSTR, 6TH INT SYMP ANTARCT EARTH SCI, 80–2. Tokyo: Natinal Institute of Polar Research.Google Scholar
Chappell, B. W. & Stephens, W. E. 1988. Origin of infracrustal (I-type) granite magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 7186.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. CONTRIB MINERAL PETROL 80, 189200.CrossRefGoogle Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisted: Assessment of a residual-source model. GEOLOGY 19, 163–6.2.3.CO;2>CrossRefGoogle Scholar
Eby, G. N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculationsq on their petrogenesis. LITHOS 26, 115–34.CrossRefGoogle Scholar
Field, B. D., Browne, G. H. & others. 1989. Cretaceous and Cenozoic sedimentary basins and geological evolution of the Canterbury Region, South Island, New Zealand. New Zealand Geological Survey Basin Studies 2. Lower Hutt: NZ Geological Survey.Google Scholar
Grindley, G. W. & Oliver, P. J. 1983. Palaeomagnetism of Cretaceous volcanic rocks from Marie Byrd Land, Antarctica. In Oliver, R. L., James, P. R. & Jago, J. D. (eds) Antarctic Earth Science,1339. Cambridge: Cambridge University Press.Google Scholar
Henderson, P. 1982. Inorganic Geochemistry. Oxford: Pergamon.Google Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. GEOL SOC AM ABSTR WITH PROG 11, 468.Google Scholar
Mahood, G. & Hildreth, W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. GEOCHIM COSMOCHIM ACTA 47, 1130.CrossRefGoogle Scholar
Mayes, C. L., Lawver, L. A. & Sandwell, D. T. 1990. Tectonic history and new isochron chart of the South Pacific. J GEOPHYS RES 95, 8543–67.CrossRefGoogle Scholar
Mittlefehldt, D. W. & Miller, D. F. 1983. Geochemistry of the Sweetwater Wash Pluton, California: Implication for “anomalous” trace element behaviour during differentiation of felsic magmas. GEOCHIM COSMOCHIM ACTA 47, 109–24.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.CrossRefGoogle Scholar
Sawka, W. N. 1988. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. TRANS R SOC EDINBURGH EARTH SCI 79, 157–68.Google Scholar
Sawka, W. N., Heizler, M. T., Kistler, R. W. & Chappell, B. W. 1990. Geochemistry of highly fractionated I- and S-type granites from the Tin-Tungsten province of western Tasmania. In Stein, H. J. & Hannah, J. L. (eds) Ore-bearing granite systems; Petrogenesis and mineralizing processes. GEOL SOC AM SPEC PAP 246, 161179.Google Scholar
Spörli, K. B. & Craddock, D. 1981. Geology of the Ruppert Coast, Marie Byrd Land, Antarctica. In Cresswell, M. M. & Vella, P. (eds) Gondwana V, 243–50. Rotterdam: Balkema.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: Its composition and evolution. Oxford: Blackwell.Google Scholar
Wade, F. A., Cathey, C. A. & Oldham, J. B. 1977. Reconnaissance geologic map of the Alexandra Mountains quadrangle, Marie Byrd Land, Antarctica, 1:250,000. Antarctic Geologic Map A-5, US Antarctic Research Program.Google Scholar
Weaver, S. D., Gibson, I. L., Houghton, B. F. & Wilson, C. J. N. 1990. Mobility of rare earth and other elements during crystallization of peralkaline silicic lavas. J VOLCANOL GEOTHERM RES 43, 5770.CrossRefGoogle Scholar
Weaver, S. D., Bradshaw, J. D. & Adams, C. J. 1991. Granitoids of the Ford Ranges, Marie Byrd Land, Antarctica. In Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological Evolution of Antarctica, 345–51. Cambridge: Cambridge University Press.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. CONTRIB MINERAL PETROL 95, 407–19.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia, SOC AM MEM 159, 2134.Google Scholar