Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:03:44.711Z Has data issue: false hasContentIssue false

Granites and rhyolites from the northwestern U.S.A.: temporal variation in magmatic processes and relations to tectonic setting

Published online by Cambridge University Press:  03 November 2011

Marc D. Norman
Affiliation:
Marc D. Norman, Planetary Geosciences, Department of Geology and Geophysics, School of Ocean and Earth Science and Technology,University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A.
William P. Leeman
Affiliation:
William P. Leeman, Keith-Wiess Geological Laboratories, Rice University, Houston, TX 77251, U.S.A.
Stanley A. Mertzman
Affiliation:
Stanley A. Mertzman, Department of Geology, Franklin and Marshall College, Lancaster, PA 17604, U.S.A.

Abstract

Cretaceous and Cainozoic granites and rhyolites in the northwestern U.S.A. provide a record of silicic magmatism related to diverse tectonic settings and large-scale variations in crustal structure. The Late Cretaceous Idaho Batholith is a tonalitic to granitic Cordilleran batholith that was produced during plate convergence. Rocks of the batholith tend to be sodic (Na2O > K2O), with fractionated HREE, negligible Eu anomalies, and high Sr contents, suggesting their generation from relatively mafic sources at a depth sufficient to stabilise garnet. In contrast, Neogene rhyolites of the Snake River Plain, which erupted in an extensional environment, are potassic (K2O > Na2O), with unfractionated HREE patterns, negative Eu anomalies, and low Sr contents, suggesting a shallower, more feldspathic source with abundant plagioclase. Eocene age volcanic and plutonic rocks have compositions transi- tional between those of the Cretaceous batholith and the Neogene rhyolites. These data are consistent with a progressively shallowing locus of silicic magma generation as the tectonic regime changed from convergence to extension.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R. L. & Ward, P. 1991. Evolving geographic patterns of Cenozoic magmatism in the North American Cordillera: the temporal and spatial association of magmatism and metamorphic core complexes. J GEOPHYS RES 96, 13201–24.CrossRefGoogle Scholar
Armstrong, R. L., Leeman, W. P. & Malde, H. E. 1975. K–Ar dating, Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho. AM J SCI 275, 225–51.CrossRefGoogle Scholar
Armstrong, R. L., Taubeneck, W. H. & Hales, P. O. 1977. Rb-Sr and K-Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho. GEOL SOC AM BULL 88, 397411.2.0.CO;2>CrossRefGoogle Scholar
Atherton, M. P., McCourt, W. J., Sanderson, L. M. & Taylor, W. P. 1979. The geochemical character of the segmented Peruvian Coastal batholith and associated volcanics. In Atherton, M. P. & Tarney, J. (eds) Origin of granite batholiths, 4564. Kent, UK: Shiva.CrossRefGoogle Scholar
Bennett, E. H. 1986. Relationship of the Trans-Challis fault system in central Idaho to Eocene and Basin and Range extensions. GEOLOGY 14, 481–4.2.0.CO;2>CrossRefGoogle Scholar
Bennett, E. H. & Knowles, C. R. 1985. Tertiary plutons and related rocks in central Idaho. US GEOL SURV BULL 1658A–S, McIntyre, D. H. (ed.) 8195.Google Scholar
Bonnichsen, B. & Kaufman, D. F. 1987. Physical features of rhyolite lava flows in the Snake River Plain volcanic province, southwestern Idaho. GEOL SOC AM SPEC PAP 212, 119–45.Google Scholar
Carlson, D. H., Fleck, R., Moye, F. J. & Fox, K. F. 1991. Geology, geochemistry, and isotopic character of the Colville Igneous Complex, northeastern Washington. J GEOPHYS RES 96, 13313–33.CrossRefGoogle Scholar
Carlson, R. W. & Hart, W. K. 1987. Crustal genesis on the Oregon Plateau. J GEOPHYS RES 92, 6191–206.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1984. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Keqin, X. & Guanchi, T. (eds), Geology of granites and their metallogenic relations, 87101. Beijing: Science Press.Google Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.CrossRefGoogle Scholar
Christiansen, R. L. & Lipman, P. W. 1972. Cenozoic volcanism and plate tectonic evolution of the western United States II. Late Cenozoic. PHILOS TRANS R SOC LONDON A271, 249–84.Google Scholar
Christiansen, R. L. & McKee, E. H. 1978. Late Cenozoic volcanic and tectonic evolution of the Great Basin and Columbia intermontane regions. In Smith, R. B., & Eaton, G.P. (eds). Cenozoic Tectonics and Regional Geophysics of the Western Cordillera. GEOL SOC AM MEM 152, 283311.Google Scholar
Coney, P. J. 1978. Mesozoic-Cenozoic Cordilleran plate tectonics. In Smith, R. B. & Eaton, G. P. (eds). Cenozoic Tectonics and Regional Geophysics of The Western Cordillera. GEOL SOC AM MEM 152, 3350.Google Scholar
Criss, R. E. & Fleck, R. J. 1987. Petrogenesis, geochronology, and hydrothermal systems of the northern Idaho batholith and adjacent areas based on 18O/16O, D/H, 87Sr/86Sr, K–Ar, and 40Ar/39Ar studies. US GEOL SURV PROF PAPER 1436, 95137.Google Scholar
Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., McKittrick, M. A. & Olivares, M. A. 1988. Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountains region. GEOL SOC AM BULL 100, 1023–39.2.3.CO;2>CrossRefGoogle Scholar
Doe, B. R., Leeman, W. P., Christiansen, R. L. & Hedge, C. E. 1982. Lead and strontium isotopes and related trace elements as genetic tracers in the upper Cenozoic rhyolite-basalt association of the Yellowstone Plateau volcanic field. J GEOPHYS RES 87, 4785–806.CrossRefGoogle Scholar
Dudas, F. O. 1991. Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana alkalic province. J GEOPHYS RES 96, 13261–77.CrossRefGoogle Scholar
Ekren, E. B., McIntyre, D. H. & Bennett, E. H. 1984. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho. US GEOL SURV PROF PAP 1272.Google Scholar
Farmer, G. L. & DePaolo, D. J. 1983. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure 1. Nd and Sr isotopic studies in the geocline of the northern Great Basin. J GEOPHYS RES 88, 3379–401.CrossRefGoogle Scholar
Fisher, F. S., Mclntyre, D. H. & Johnson, K. M. 1983. Geologic map of the Challis 1° × 2° quadrangle, Idah. US GEOL SURV OPEN FILE REP 83523.Google Scholar
Fleck, R. J. 1990. Neodymium, strontium, and trace element evidence of crustal anatexis and magma mixing in the Idaho batholith. In Anderson, J. L. (ed.) The Nature and Origin of Cordilleran Magmatism 359–73. GEOL SOC AM MEM 174.Google Scholar
Fleck, R. J. & Criss, R. E. 1985. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. CONTRIB MINERAL PETROL 90, 291308.CrossRefGoogle Scholar
Foster, D. A. & Hyndman, D. W. 1990. Magma mixing and mingling between synplutonic mafic dikes and granite in the Idaho-Bitterroot batholith. In Anderson, J. L. (ed.). The Nature and Origin of Cordilleran Magmatism, 347–58 GEOL SOC AM MEM 174.Google Scholar
Green, T. H. 1991. Significance of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. In Chappell, B. W. (ed) Abstr Second Hutton Symposium Granites and Related Rocks, 40. Canberra: Bureau of Mineral Resources Record 1991/25.Google Scholar
Gromet, L. P. & Silver, L. T. 1987. REE variations across the Peninsular Ranges batholith: Implications for batholithic petrogenesis and crustal growth in magmatic arcs. J PETROL 28, 75125.CrossRefGoogle Scholar
Hamilton, W. B. 1988. Tectonic setting and variations with depth of some Cretaceous and Cenozoic structural and magmatic systems of the western United States. In Ernst, W. G. (ed.), Metamorphism and Crustal Evolution of the Western United States 1–40.Google Scholar
Hamilton, W. & Myers, W. B. 1974. Nature of the Boulder batholith of Montana. GEOL SOC AM BULL 85, 365–78.2.0.CO;2>CrossRefGoogle Scholar
Hardyman, R. F. 1988. Eocene magmatism, Challis volcanic field, central Idaho: an overview. GEOL SOC AM ABSTR PROG 20, 419.Google Scholar
Hardyman, R. F. & Fisher, F. S. 1985. Rhyolite intrusions and associated mineral deposits in the Challis volcanic field, Challis quadrangle. US GEOL SURV BULL 1658A–S, Mclntyre, D. H. (ed.), 167–79.Google Scholar
Hart, W. K. 1985. Chemical and isotopic evidence for mixing between depleted and enriched mantle, northwestern U.S.A. GEOCHIM COSMOCHIM ACTA 49, 131–44.CrossRefGoogle Scholar
Hildreth, W., Halliday, A. N. & Christiansen, R. L. 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. J PETROL 32, 63138.CrossRefGoogle Scholar
Hill, R. I., Chappell, B. W. & Campbell, I. H. 1991. Late Archean granitoids of the southeastern Yilgarn Block Western Australia: age, geochemistry, and origin. In Chappell, B. W. (ed.) Abstracts of the Second Hutton Symposium on Granites and Related Rocks, 46. Canberra: Bureau of Mineral Resources Record 1991/25.Google Scholar
Honjo, N., McElwee, K. R., Duncan, R. A. & Leeman, W. P. 1986. K–Ar ages of volcanic rocks from the Magic Reservoir eruptive center, Snake River Plain, Idaho. ISOCHRON/WEST 46, 1519.Google Scholar
Honjo, N. & Leeman, W. P. 1987. Origin of hybrid ferrolatite lavas from Magic Reservoir eruptive center, Snake River Plain, Idaho. CONTRIB MINERAL PETROL 96, 163–77.CrossRefGoogle Scholar
Hooper, P. R., Kleck, W. D., Knowles, C. R., Reidel, S. P. & Theiessen, R. L. 1984. Imnaha basalt, Columbia River Basalt Group. J PETROL 25, 473500.CrossRefGoogle Scholar
Hyndman, D. W. 1983. The Idaho batholith and associated plutons, Idaho and western Montana. GEOL SOC AM MEM 159, 213–40.Google Scholar
Hyndman, D. W. 1984. A petrographic and chemical section through the northern Idaho batholith. J GEOL 92, 83102.CrossRefGoogle Scholar
Kiilsgaard, T. H. & Lewis, R. S. 1985. Plutonic rocks of Cretaceous age and faults in the Atlanta lobe of the Idaho batholith, Challis quadrangle. US GEOL SURV BULL 1658A–S, Mclntyre, D. H. (ed.), 2942.Google Scholar
Leeman, W. P. 1982. Tectonic and magmatic significance of strontium isotopic variations in Cenozoic volcanic rocks from the western United States. GEOL SOC AM BULL 93, 487503.2.0.CO;2>CrossRefGoogle Scholar
Leeman, W. P., Menzies, M. A., Matty, D. J. & Embree, G. F. 1985. Strontium, neodymium, and lead isotopic compositions of deep crustal xenoliths from the Snake River Plain: evidence for Archean basement. EARTH PLANET SCI LETT 75, 354–68CrossRefGoogle Scholar
Lewis, R. S. & Kiilsgaard, T. H. 1991. Eocene plutonic rocks in south central Idaho. J GEOPHYS RES 96, 13295–311.CrossRefGoogle Scholar
Lipman, P. W. 1988. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic firld and its cogenetic granitic batholith, northern New Mexico U.S.A. TRANS R SOC EDINBURGH EARTH SCI 79, 265–88.Google Scholar
Macdonald, R. & Smith, R. L. 1988. Relationships between silicic plutonism and volcanism: geochemical evidence. TRANS R SOC EDINBURGH EARTH SCI 79, 257–63.Google Scholar
McCulloch, M. T. 1991. The role of subducted slabs in an evolving earth. EARTH PLANET SCI LETT (in press).Google Scholar
McCulloch, M. T. & Bennett, V. C. 1991. Progressive growth of the Earth's continental crust and depleted mantle: geochemical and geodynamical constraints. GEOCHIM COSMOCHIM ACTA (submitted).Google Scholar
Mclntyre, D. H., Ekren, E. B. & Hardyman, R. F. 1982. Stratigraphic and structural framework of the Challis volcanics in the eastern half of the Challis 1° × 2° quadrangle. In Bonichsen, B. & Breckenridge, R. M. (eds) Cenozoic Geology of Idaho. BULL IDAHO BUR MINES GEOL 26, 322.Google Scholar
Menzies, M. A. 1989. Cratonic, circumcratonic, and oceanic mantle domains beneath the western United States. J GEOPHYS RES 94, 7899–915.CrossRefGoogle Scholar
Miller, C. F., Hanchar, J. M., Wooden, J. L., Bennett, V. C., Harrison, T. M., Wark, D. A. & Foster, D. A. 1991. Source regions of granitoid plutons: evidence from lower crustal xenoliths and inherited accessory minerals. In Chappell, B. W. (ed.) Abstracts of the Second Hutton Symposium on Granites and Related Rocks, 68. Canberra: Bureau of Mineral Resources Record 1991/25.Google Scholar
Miller, D. M. 1983. Strain on a gneiss dome in the Albion Mountains metamorphic core complex, Idaho. AM J SCI 283, 605–32.CrossRefGoogle Scholar
Morgan, J. P. 1972. Plate motions and deep mantle convection. In Shagam, R. (ed.) GEOL SOC AM MEM 132, 722.Google Scholar
Morgan, L. A., Doherty, D. A. & Leeman, W. P. 1984. Ignimbrites of the eastern Snake River Plain: evidence for major caldera-forming eruptions. J GEOPHYS RES 89, 8665–78.CrossRefGoogle Scholar
Norman, M. D. & Leeman, W. P. 1989. Geochemical evolution of Cretaceous-Cenozoic magmatism and its relation to tectonic setting, southwestern Idaho. EARTH PLANET SCI LETT 94, 7896.CrossRefGoogle Scholar
Norman, M. D. & Mertzman, S. A. 1991. Petrogenesis of Challis volcanics from central and southwestern Idaho: trace element and Pb isotopic evidence. J GEOPHYS RES 96, 13729–93.CrossRefGoogle Scholar
O'Brien, H. E., Irving, A. J. & McCallum, I. S. 1991. Eocene potassic magmatism in the Highwood Mountains, Montana: petrology, geochemistry, and tectonic implications. J GEOPHYS RES 96, 13237–60.CrossRefGoogle Scholar
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. PRECAMBRIAN RES 51, 125.CrossRefGoogle Scholar
Rea, D. K. & Duncan, R. A. 1986. North Pacific plate convergence: a quantitative record of the past 140 m.y. GEOLOGY 14, 373–6.2.0.CO;2>CrossRefGoogle Scholar
Rudnick, R. L. & Taylor, S. R. 1986. Geochemical constraints on the origin of Archaean tonalitic-trondhjemitic rocks and implications for lower crustal compositions. In Dawson, J. B., Carsell, D. A., Hall, J. & Wedpohl, K. H. (eds) The Nature of the Lower Continental Crust GEOL SOC SPEC PUB 24, 179–91.CrossRefGoogle Scholar
Rytuba, J. J. & McKee, E. H. 1984. Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada. J GEOPHYS RES 89, 8616–28.CrossRefGoogle Scholar
Schuster, R. D. & Bickford, M. E. 1985. Chemical and isotopic evidence for the petrogenesis of the northeastern Idaho Batholith. J GEOL 93, 727–42.CrossRefGoogle Scholar
Suayah, I. B. & Rogers, J. J. W. 1991. Petrology of the Lower Tertiary Clarno formation in north central Oregon: the importance of magma mixing. J GEOPHYS RES 96, 13357–71.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publishing.Google Scholar
Tilling, R. I. 1973. Boulder batholith, Montana: a product of two contemporaneous but chemically distinct magma series. GEOL SOC AM BULL 84, 3879–900.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, R. S. & Francis, P. W. 1979. Petrogenetic relationships of volcanic and intrusive rocks of the Andes. In Atherton, M. P. & Tarney, J. (eds), Origin of granite batholiths: geochemical evidence, 6575. Kent, UK: Shiva.CrossRefGoogle Scholar
Vallier, T. L. & Brooks, H. C. 1987. The geology of the Blue Mountains. US GEOL SUR PROF PAP 1436Google Scholar
Wooden, J. L. & Mueller, P. A. 1988. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution. EARTH PLANET SCI LETT 87, 5972.CrossRefGoogle Scholar
Wust, S. L. 1986a. Extensional deformation with northwest vergence, Pioneer core complex, central Idaho. GEOLOGY 14, 712–4.2.0.CO;2>CrossRefGoogle Scholar
Wust, S. L. 1986b. Regional correlation of extension directions in Cordilleran metamorphic core complexes. GEOLOGY 14, 828–30.2.0.CO;2>CrossRefGoogle Scholar
Wyborn, D., Chappell, B. W. & Johnston, R. M. 1981. Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia. J GEOPHYS RES 86, 10335–48.CrossRefGoogle Scholar
Zartman, R. E. 1974. Lead provinces in the Cordillera of the western United States and their geologic significance. ECON GEOL 69, 792805.CrossRefGoogle Scholar