Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T07:41:54.093Z Has data issue: false hasContentIssue false

The fauna and flora of the Insect Limestone (late Eocene), Isle of Wight, UK: introduction, history and geology

Published online by Cambridge University Press:  28 May 2014

Andrew J. Ross
Affiliation:
Department of Natural Sciences, National Museum of Scotland, Chambers Street, Edinburgh EH1 1JF, UK
Angela Self
Affiliation:
Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

The Insect Limestone has long been known as a source of exquisitely preserved insects and other arthropods. It occurs on the north side of the Isle of Wight and is latest Eocene in age. A summary of the history of the study of the Insect Limestone is given, along with detailed stratigraphical and sedimentological information. This paper is the first in a thematic set of papers.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Adams, A. E., MacKenzie, W. S. & Guilford, C. 1984. Atlas of sedimentary rocks under the microscope. Harlow: Longman Scientific and Technical. 104 pp.Google Scholar
Amorosi, A. 1997, Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sedimentary Geology 109, 135–53.Google Scholar
Armenteros, I., Daley, B. & Garcia, E. 1997. Lacustrine and palustrine facies in the Bembridge Limestone (late Eocene, Hampshire Basin) of the Isle of Wight, southern England. Palaeogeography, Palaeoclimatology, Palaeoecology 128, 111–32.Google Scholar
Brand, U. & Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate diagenesis system: trace elements. Journal of Sedimentary Petrology 50, 1219–36.Google Scholar
Bristow, H. W. 1862. The geology of the Isle of Wight. Memoirs of the Geological Survey of Great Britain. 138 pp.Google Scholar
Bristow, H. W. 1889. The geology of the Isle of Wight. 2nd Ed. Memoirs of the Geological Survey, England and Wales. 349 pp.Google Scholar
Brodie, P. B. 1878. On the discovery of a large and varied series of fossil insects and other associated fossils, in the Eocene (Tertiary) strata of the Isle of Wight. Proceedings of the Warwickshire Naturalists' and Archaeologists' Field Club 1878, 312.Google Scholar
Brodie, P. B. 1894. Notes on the Eocene Tertiary insects of the Isle of Wight. Proceedings of the Warwickshire Naturalists' and Archaeologists' Field Club, 39th Annual Report 1894, 6770.Google Scholar
Butler, A. G. 1889. Description of a new genus of fossil moths belonging to the geometrid family Euschemidae. Proceedings of the Zoological Society of London 59, 292–97.Google Scholar
Cockerell, T. D. A. 1915. British fossil insects. Proceedings of the United States National Museum 49, 469–99.Google Scholar
Cockerell, T. D. A. 1917. New Tertiary insects. Proceedings of the United States National Museum 52, 373–84.Google Scholar
Cockerell, T. D. A. 1921a. Fossil arthropods in the British Museum.-V. Oligocene Hymenoptera from the Isle of Wight. Annals and Magazine of Natural History, Ser. 9 7, 125.Google Scholar
Cockerell, T. D. A. 1921b. Fossil arthropods in the British Museum.-VI. Oligocene insects from Gurnet Bay, Isle of Wight. Annals and Magazine of Natural History, Ser. 9 7, 453–80.Google Scholar
Cockerell, T. D. A. 1921c. Fossil arthropods in the British Museum.-VII. Annals and Magazine of Natural History, Ser. 9 7, 541–45.Google Scholar
Cockerell, T. D. A. 1922a. New name for a fossil tipulid fly. Entomologist 55, 17.Google Scholar
Cockerell, T. D. A. 1922b. Fossil arthropods in the British Museum.-VIII. Homoptera from Gurnet Bay, Isle of Wight. Annals and Magazine of Natural History, Ser. 9 10, 157–61.Google Scholar
Cockerell, T. D. A. 1922c. Two families of insects new to British Tertiary strata. Canadian Entomologist 54, 3334.Google Scholar
Cockerell, T. D. A. 1926. Some Tertiary fossil insects. Annals and Magazine of Natural History, Ser. 9 18, 311–24.Google Scholar
Cockerell, T. D. A. 1927. Fossil insects from the Miocene of Colorado. Annals and Magazine of Natural History, Ser. 9 19, 161–66.Google Scholar
Cockerell, T. D. A. & Andrews, H. 1916. Dragon-flies from the English Oligocene. Proceedings of the Biological Society of Washington 29, 8992.Google Scholar
Cockerell, T. D. A. & Haines, F. H. 1921. Fossil Tipulidae from the Oligocene of the Isle of Wight. Entomologist, 54, 8184, 109–12.Google Scholar
Collinson, M. E. 1981. Floristic changes indicate a cooling climate in the Eocene of southern England. Nature 291, 315–17.Google Scholar
Crane, M. D. & Getty, T. A. 1975. An historical account of the palaeontological collections formed by R. W. Hooley (1865–1923). Newsletter of the Geological Curators Group 4(1), 170–79.Google Scholar
Crowson, R. A. 1962. Observations on the beetle family Cupedidae, with descriptions of two new fossil forms and a key to the recent genera. Annals and Magazine of Natural History, Ser. 13 5, 147–57.Google Scholar
Daley, B. 1971. Diapiric and other deformational structures in an Oligocene argillaceous limestone. Sedimentary Geology 6, 2951.Google Scholar
Daley, B. 1972. Macroinvertebrate assemblages from the Bembridge Marls (Oligocene) of the Isle of Wight, England and their environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 11, 1132.Google Scholar
Daley, B. 1973. The palaeoenvironment of the Bembridge Marls (Oligocene) of the Isle of Wight. Proceedings of the Geologists' Association 84, 8393.Google Scholar
Daley, B. 1999. Palaeogene sections in the Isle of Wight. Tertiary Research 19, 169.Google Scholar
Daley, B. & Edwards, N. 1971. Palaeogene warping in the Isle of Wight. Geological Magazine 108, 399405.Google Scholar
Davis, A. G. 1945. Obituary notices, 1944. George William Colenutt. Proceedings of the Geologists' Association 56(1), 49.Google Scholar
Donisthorpe, H. S. J. K. 1920. British Oligocene ants. Annals and Magazine of Natural History Ser. 9, 6, 8194.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In Ham, W. E. (ed.) Classification of carbonate rocks. Memoirs of the American Association of Petroleum Geologists 1, 108–21.Google Scholar
Edwards, F. W. 1923. Oligocene mosquitoes in the British Museum; with a summary of our present knowledge concerning fossil Culicidae. Quarterly Journal of the Geological Society 79(2), 139–55.Google Scholar
Folk, R. L. 1959. Practical petrographic classification of limestones. Bulletin of the American Association of Petroleum Geologists 43, 138.Google Scholar
Folk, R. L. 1962. Spectral subdivision of limestone types. In Ham, W. E. (ed.) Classification of carbonate rocks. Memoirs of the American Association of Petroleum Geologists 1, 6284.Google Scholar
Gale, A. S., Huggett, J. M., Pälike, H., Laurie, E., Hailwood, E. A. & Hardenbol, J. 2006. Correlation of Eocene–Oligocene marine and continental records: orbital cyclicity, magnetostratigraphy and sequence stratigraphy of the Solent Group, Isle of Wight, UK. Journal of the Geological Society, London 163, 401–15.Google Scholar
Gale, A. S., Huggett, J. & Laurie, E. 2007. Discussion on the Eocene–Oligocene boundary in the UK, (Journal of the Geological Society, London 163, 2006, pp. 401–415). Journal of the Geological Society, London 164, 686–88.Google Scholar
Hayes, P. A. & Collinson, M. E. 2014. The Flora of the Insect Limestone (latest Eocene) from the Isle of Wight, southern England. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104 (for 2013), 245–61.Google Scholar
Hendry, J. P. 1993. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology 40, 87106.Google Scholar
Hooker, J. J., Collinson, M. E., Van Bergen, P. F., Singer, R. L., Leeuw, J. W. De & Jones, T. P. 1995. Reconstruction of land and freshwater palaeoenvironments near the Eocene–Oligocene boundary, southern England. Journal of the Geological Society, London 152, 449–68.Google Scholar
Hooker, J. J., Collinson, M. E., Grimes, S., Sille, N. & Mattey, D. 2007. Discussion on the Eocene–Oligocene boundary in the UK. Journal of the Geological Society, London. 163, 2006, pp. 401–15. Journal of the Geological Society, London 164, 685–86.Google Scholar
Hooker, J. J., Grimes, S., Mattey, D., Collinson, M. E. & Sheldon, N. D. 2009. Refined correlation of the UK Late Eocene–Early Oligocene Solent Group and timing of its climate history. In Koeberl, C. & Montanari, A. (eds) The Late Eocene Earth – hothouse, icehouse, and impacts. Geological Society of America Special Paper 452, 179–95.Google Scholar
Hopson, P. 2011. The geological history of the Isle of Wight: an overview of the ‘diamond in Britain's geological crown’. Proceedings of the Geologists' Association 122, 745–63.Google Scholar
Insole, A., Daley, B. & Gale, A. 1998. The Isle of Wight. Geologists' Association Field Guides 60. 132 pp.Google Scholar
Insole, A. & Daley, B. 1995. A revision of the lithostratigraphical nomenclature of the Late Eocene and Early Oligocene strata of the Hampshire Basin, southern England. Tertiary Research 7(3), 67100.Google Scholar
Jarzembowski, E. A. 1976. Report of Easter field meeting: the lower tertiaries of the Isle of Wight, 27–31.III.1975. Tertiary Research 1(1), 1116.Google Scholar
Jarzembowski, E. A. 1980. Fossil insects from the Bembridge Marls, Palaeogene of the Isle of Wight, Southern England. Bulletin of the British Museum (Natural History), Geology Series 33(4), 237–93.Google Scholar
Jarzembowski, E. A. & Palmer, D. 2010. The palaeoentomology of Tertiary (Cenozoic) strata in Great Britain. In Jarzembowski, E. A., Siveter, D. J., Palmer, D. & Selden, P. A. Fossil arthropods of Great Britain, 209–47. Geological Conservation Review Series. Peterborough: Joint Nature Conservation Committee. 294 pp.Google Scholar
Kallis, P., Bleich, K. E. & Stahr, K. 2000. Micromorphological and geochemical characterization of Tertiary ‘freshwater carbonates’ locally preserved north of the edge of the Miocene Molasse Basin (SW Germany). Catena 41, 1942.Google Scholar
Keen, M. C. 1978. The Tertiary–Palaeogene. In Bate, R. H. & Robinson, E. (eds) A stratigraphical index of British Ostracoda. Geological Journal Special Issue 8. 538 pp.Google Scholar
Kennedy, C. H. 1925. New genera of Megapodagrioninae, with notes on the subfamily. Bulletin of the Museum of Comparative Zoology 67(7), 291–11.Google Scholar
Klimaszewski, S. M. & Popov, Y. A. 1993. New fossil hemipteran insects from southern England (Hemiptera: Psyllina+Coleorrhyncha). Annals of the Upper Silesian Museum, Entomology, Supplement 1, 1316.Google Scholar
McCobb, L. M. E., Duncan, I. J., Jarzembowski, E. A., Stankiewicz, B. A., Wills, M. A. & Briggs, D. E. G. 1998. Taphonomy of the insects from the Insect Bed (Bembridge Marls), late Eocene, Isle of Wight, England. Geological Magazine 135(4), 553563.Google Scholar
McCook, H. C. 1888a. A new fossil spider, Eoatypus woodwardii. Proceedings of the Academy of Natural Sciences 1888, 200–02.Google Scholar
McCook, H. C. 1888b. A new fossil spider (Eoatypus woodwardii). Annals & Magazine of Natural History 6(2), 366–69.Google Scholar
Marshall, J. F. & Staley, J. 1931. Stereoscopic photomicrographs of Oligocene fossil insects from the Isle of Wight. Proceedings of the Entomological Society of London 6(2), 3840.Google Scholar
Meyer, H. W. 2003. The fossils of Florissant. Washington, DC: Smithsonian Books. 258 pp.Google Scholar
Motkin, D. L. 1991. Edwin Smith and his discovery of Roman Occupation in Gurnard Bay, 1864–1880. Proceedings of the Isle of Wight Natural History and Archaeology Society 10, 139–47.Google Scholar
Munt, M. C. 2014. Mollusca from the Insect Limestone (Bembridge Marls Member: Bouldnor Formation: Solent Group), Paleogene, Isle of Wight, southern England. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104 (for 2013), 263–74.Google Scholar
Murray, J. W. & Wright, C. A. 1974. Palaeogene Foraminiferida and palaeoecology, Hampshire and Paris Basins and the English Channel, Special Papers in Palaeontology 14, 1129.Google Scholar
Nel, A. 1988. & Jarzembowski, E. A. 1999. Fossil damselflies and dragonflies (Insecta: Odonata) from the late Upper Eocene of southern England. Proceedings of the Geologists' Association 110(3), 193201.Google Scholar
Nichols, G. 1999. Sedimentology and Stratigraphy, Oxford: Blackwell Science Ltd. 355pp.Google Scholar
Odin, G. S. & Matter, A. 1981. De glauconiarum origine. Sedimentology 28, 611–41.Google Scholar
Pain, T. & Preece, R. C. 1968. The land Mollusca of the Bembridge Limestone. Proceedings of the Isle of Wight Natural History and Archaeological Society 6, 101–11.Google Scholar
Pinto, R. S. J. 2004. The stratigraphy of the Bembridge Limestone and Lower Bembridge Marls near Burntwood, Isle of Wight. B.Sc. Unpublished Geology Dissertation, University of Greenwich, UK.Google Scholar
Prothero, D. R. 1994. The Eocene–Oligocene transition: paradise lost. New York: Columbia University Press. 291 pp.Google Scholar
Rasnitsyn, A. R. & Quicke, D. L. J. (eds). 2002. History of insects. Dordrecht: Kluwer Academic Publishers. 517 pp.Google Scholar
Reid, E. M. & Chandler, M. E. J. 1926. Catalogue of the Cainozoic plants in the Department of Geology, Volume I, the Bembridge flora. London: British Museum (Natural History). 206 pp.Google Scholar
Rosen, K. von. 1913. Die fossilen termiten: eine kurze zusammenfassung der bis jetzt bekannten funde. 2nd International Congress of Entomology, Oxford, 1912 2, 318–34.Google Scholar
Ross, A. J., Jarzembowski, E. A. & Brooks, S. J. 2000. The Cretaceous and Cenozoic record of insects (Hexapoda) with regard to global change. In Culver, S. J. & Rawson, P. F. (eds) Biotic response to global change, the last 145 million years, 288302. Cambridge, UK: Cambridge University Press. 516 pp.Google Scholar
Saller, A. H. & Moore, C. H. Jr. 1991. Geochemistry of meteoric calcite cements in some Pleistocene limestones. Sedimentology 38, 601–21.Google Scholar
Sarkar, A., Sarangi, S., Ebihara, M., Bhattacharya, & Ray, A. K. 2003. Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poor conditions and foraminiferal extinction. Chemical Geology 201, 281–93.Google Scholar
Selden, P. A. 2001. Eocene spiders from the Isle of Wight with preserved respiratory structures. Palaeontology 44(4), 695729.Google Scholar
Self, A. 2005. The depositional environment and diagenesis of the Insect Bed, Isle of Wight. Unpublished MSc Thesis, University of Greenwich, UK.Google Scholar
Sherborn, C. D. & Jones, T. R. 1889. The Tertiary Entomostraca (Supplement). Monograph of the Palaeontographical Society 199 (Part of Volume 42), 155. London: The Palaeontographical Society.Google Scholar
Smith, E. J. A'C. 1874. Discovery of remains of plants and insects. Nature 11, 88.Google Scholar
Standke, G. 2008. Bitterfelder Bernstein gleich Baltischer Bernstein? – Eine geologische Raum – Zeit-Betrachtung und genetische Schlussfolgerungen. Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften 236, 1133.Google Scholar
Triat, J. M., Odin, G. S. & Hunziker, J. C. 1976. Glauconies crétacées remaniées dans le Paléogène continental du basin d'Apt et Valréas. Bulletin de la Société Géologique de France 6, 1671–76.Google Scholar
Tucker, M. E. 2001. Sedimentary petrology. 3rd Ed. Oxford: Blackwell Science Ltd. 262 pp.Google Scholar
Tucker, M. E. & Wright, V. P. 1990. Carbonate sedimentology. Oxford: Blackwell Scientific Publications. 482 pp.Google Scholar
Weber, W. A. 2000. The American Cockerell, a naturalist's life, 1866–1948. University Press of Colorado. 352 pp.Google Scholar
Woodward, H. 1878. On the occurrence of Branchipus (or Chirocephalus) in a fossil state, associated with Archaeoniscus, and with numerous insect-remains in the Eocene freshwater limestone of Gurnet Bay, Isle of Wight. Geological Magazine 15, 8889.Google Scholar
Woodward, H. 1879. On the occurrence of Branchipus (or Chirocephalus) in a fossil state, associated with Eosphaeroma and with numerous insect-remains, in the Eocene freshwater (Bembridge) limestone of Gurnet Bay, Isle of Wight. Quarterly Journal of the Geological Society, London 35, 342–50.Google Scholar
Zeuner, F. E. 1937. Descriptions of new genera and species of fossil Saltatoria (Orthoptera). Proceedings of the Royal Entomological Society of London, Ser. B 6(8), 154–59.Google Scholar