Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T02:25:01.413Z Has data issue: false hasContentIssue false

A multilevel analysis of cognitive dysfunction and psychopathology associated with chromosome 22q11.2 deletion syndrome in children

Published online by Cambridge University Press:  01 November 2005

TONY J. SIMON
Affiliation:
University of California, Davis
JOEL P. BISH
Affiliation:
Children's Hospital of Philadelphia
CARRIE E. BEARDEN
Affiliation:
University of California, Los Angeles
LIJUN DING
Affiliation:
Children's Hospital of Philadelphia
SAMANTHA FERRANTE
Affiliation:
Children's Hospital of Philadelphia
VY NGUYEN
Affiliation:
University of California, Davis
JAMES C. GEE
Affiliation:
University of Pennsylvania
DONNA M. McDONALD–McGINN
Affiliation:
Children's Hospital of Philadelphia
ELAINE H. ZACKAI
Affiliation:
Children's Hospital of Philadelphia University of Pennsylvania
BEVERLY S. EMANUEL
Affiliation:
Children's Hospital of Philadelphia University of Pennsylvania

Abstract

We present a multilevel approach to developing potential explanations of cognitive impairments and psychopathologies common to individuals with chromosome 22q11.2 deletion syndrome. Results presented support our hypothesis of posterior parietal dysfunction as a central determinant of characteristic visuospatial and numerical cognitive impairments. Converging data suggest that brain development anomalies, primarily tissue reductions in the posterior brain and changes to the corpus callosum, may affect parietal connectivity. Further findings indicate that dysfunction in “frontal” attention systems may explain some executive cognition impairments observed in affected children, and that there may be links between these domains of cognitive function and some of the serious psychiatric conditions, such as attention-deficit/hyperactivity disorder, autism, and schizophrenia, that have elevated incidence rates in the syndrome. Linking the neural structure and the cognitive processing levels in this way enabled us to develop an elaborate structure/function mapping hypothesis for the impairments that are observed. We show also, that in the case of the catechol-O-methyltransferase gene, a fairly direct relationship between gene expression, cognitive function, and psychopathology exists in the affected population. Beyond that, we introduce the idea that variation in other genes may further explain the phenotypic variation in cognitive function and possibly the anomalies in brain development.We thank the children and families that participated in our studies and the staff of the 22q and You Center at the Children's Hospital of Philadelphia. This work was supported by grants from the NIH (R01HD42974 and R01HD46159) and the Philadelphia Foundation to T.J.S., Grant PO1DC02027 to B.S.E., and Grant M01-RR00240 to the Children's Hospital of Philadelphia.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhtar, N., & Enns, J. T. (1989). Relations between covert orienting and filtering in the development of visual attention. Journal of Experimental Child Psychology 48, 315334.Google Scholar
Akshoomoff, N. A., & Courchesne, E. (1994). ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. Journal of Cognitive Neuroscience 6, 388399.Google Scholar
Allen, G., Buxton, R. B., Wong, E. C., & Courchesne, E. (1997). Attentional activation of the cerebellum independent of motor involvement. Science 275, 19401943.Google Scholar
Arnold, P. D., Siegel–Bartelt, J., Cytrynbaum, C., Teshima, I., & Schachar, R. (2001). Velo-cardio-facial syndrome: Implications of microdeletion 22q11 for schizophrenia and mood disorders. American Journal of Medical Genetics 105, 354362.Google Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage 11, 805821.Google Scholar
Barnea–Goraly, N., Menon, V., Krasnow, B., Ko, A., Reiss, A. L., & Eliez, S. (2003). Investigation of white matter structure in velocardiofacial syndrome: A diffusion tensor imaging study. American Journal of Psychiatry 160, 18631869.Google Scholar
Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B 111, 209219.Google Scholar
Bassett, A. S., & Chow, E. W. (1999). 22q11 deletion syndrome: A genetic subtype of schizophrenia. Biological Psychiatry 46, 882891.Google Scholar
Bassett, A. S., Hodgkinson, K., Chow, E. W., Correia, S., Scutt, L. E., & Weksberg, R. (1998). 22q11 deletion syndrome in adults with schizophrenia. American Journal of Medical Genetics 81, 328337.Google Scholar
Bayley, N. (1969). Bayley Infant Scales of Infant Development. New York: Psychological Corporation.
Bearden, C. E., Jawad, A. F., Lynch, D. R., Monterosso, J. R., Sokol, S. M., McDonald–McGinn, D., Saitta, S. C., Harris, S. E., Moss, E. M., Wang, P. P., Zackai, E., Emannuel, B. S., & Simon, T. J. (in press). Effects of COMT genotype on behavioral symptomatology in the 22q11.2 Deletion Syndrome. Child Neuropsychology.
Bearden, C. E., Jawad, A. F., Lynch, D. R., Sokol, S. M., Kanes, S. J., McDonald–McGinn, D., Saitta, S. C., Harris, S. E., Moss, E. M., Wang, P. P., Zackai, E., Emannuel, B. S., & Simon, T. J. (2004). Effects of a functional COMT polymorphism on prefrontal cognitive function in the 22q11.2 deletion syndrome. American Journal of Psychiatry 161, 17001702.Google Scholar
Bearden, C. E., Woodin, M. F., Wang, P. P., Moss, E., McDonald–McGinn, D., Zackai, E., Emannuel, B., & Cannon, T. D. (2001). The neurocognitive phenotype of the 22q11.2 deletion syndrome: Selective deficit in visual–spatial memory. Journal of Clinical and Experimental Neuropsychology 23, 447464.Google Scholar
Belmonte, M. K., & Yurgelun–Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research 17, 651664.Google Scholar
Bilder, R. M., Volavka, J., Czobor, P., Malhotra, A. K., Kennedy, J. L., Ni, X., Goldman, R. S., Hoptman, M. J., Sheitman, B., Lindenmayer, J. P., Citrome, L., McEvoy, J. P., Kunz, M., Chakos, M., Cooper, T. B., & Lieberman, J. A. (2002). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biological Psychiatry 52, 701707.Google Scholar
Bish, J. P., Ferrante, S., McDonald–McGinn, D., Zackai, E., & Simon, T. J. (2005). Maladaptive conflict monitoring as evidence for executive dysfunction in children with chromosome 22q11.2 deletion syndrome. Developmental Science 8, 3643.Google Scholar
Bish, J. P., Nguyen, V., Ding, L., Ferrante, S., & Simon, T. J. (2004). Thalamic reductions in children with chromosome 22q11.2 deletion syndrome. NeuroReport 15, 14131415.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., Li, W., Parrish, T. B., Gitelman, D. R., & Mesulam, M. M. (2003). Neural development of selective attention and response inhibition. NeuroImage 20, 737751.Google Scholar
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402(6758), 179181.Google Scholar
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 33, 301311.Google Scholar
Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., & Gabrieli, J. D. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. NeuroImage 17, 15621571.Google Scholar
Burn, J., & Goodship, J. (1996). Developmental genetics of the heart. Current Opinion in Genetics and Development 6, 322325.Google Scholar
Burn, J., Takao, A., Wilson, D., Cross, I., Momma, K., Wadey, R., Scambler, P., & Goodship, J. (1993). Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22. Journal of Medical Genetics 30, 822824.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4, 215222.Google Scholar
Byne, W., Buchsbaum, M. S., Kemether, E., Hazlett, E. A., Shinwari, A., Mitropoulou, V., & Siever, L. J. (2001). Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Archives of General Psychiatry 58, 133140.Google Scholar
Casey, B. J., Thomas, K. M., Welsh, T. F., Badgaiyan, R., Eccard, C. H., Jennings, J. R., & Crone, E. A. (2000). Dissociation of response conflict, attentional control, and expectancy with functional magnetic resonance imaging (fMRI). Proceedings of the National Academy of Sciences of the United States of America 97, 87288733.Google Scholar
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis. Development and Psychopathology 14, 417420.Google Scholar
Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent or overlapping neural systems? Proceedings of the National Academy of Sciences of the United States of America 95, 831838.Google Scholar
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews: Neuroscience 3, 201215.Google Scholar
Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung–Courchesne, R., Lincoln, A. J., James, H. E., Haas, R. H., Schreibman, L., & Lau, L. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience 108, 848865.Google Scholar
Culham, J. C., Cavanaugh, P., & Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron 32, 737745.Google Scholar
Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: A meta-analysis. Psychiatry Research 122, 6987.Google Scholar
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition 1, 83120.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology 20, 487506.Google Scholar
Dehaene, S., Spelke, E. S., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain imaging evidence. Science 284, 970974.Google Scholar
DiGeorge, A. (1965). A new concept of the cellular basis of immunity. Journal of Pediatrics, 67, 907.Google Scholar
Driscoll, D. A., Budarf, M. L., & Emanuel, B. S. (1992). Consistent deletions and microdeletions of 22q11. American Journal of Human Genetics 50, 924933.Google Scholar
Driscoll, D. A., Spinner, N. B., Budarf, M. L., McDonald–McGinn, D. M., Zackai, E. H., Goldberg, R. B., Shprintzen, R. J., Saal, H. M., Zonana, J., Jones, M. C., Mascarello, J. T., & Emanuel, B. S. (1992). Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. American Journal of Human Genetics 44, 261268.Google Scholar
Durston, S. (2003). A review of the biological bases of ADHD: What have we learned from imaging studies? Mental Retardation and Developmental Disabilities Research Reviews 9, 184195.Google Scholar
Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, F9F16.Google Scholar
Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., Ulug, A. M., & Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry 53, 871878.Google Scholar
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. H., Straub, R. E., Goldman, D., & Weinberger, D. R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 98, 69176922.Google Scholar
Eliez, S., Blasey, C. M., Menon, V., White, C. D., Schmitt, J. E., & Reiss, A. L. (2001). Functional brain imaging study of mathematical reasoning abilities in velocardiofacial syndrome (del22q11.2). Genetics in Medicine 3, 4955.Google Scholar
Eliez, S., Blasey, C. M., Schmitt, E. J., White, C. D., Hu, D., & Reiss, A. L. (2001). Velocardiofacial syndrome: Are structural changes in the temporal and mesial temporal regions related to schizophrenia. American Journal of Psychiatry 158, 447453.Google Scholar
Eliez, S., Schmitt, J. E., White, C. D., & Reiss, A. L. (2000). Children and adolescents with velocardiofacial syndrome: A volumetric study. American Journal of Psychiatry 157, 409415.Google Scholar
Emanuel, B. S., McDonald–McGinn, D., Saitta, S. C., & Zackai, E. H. (2001). The 22q11.2 deletion syndrome. Advances in Pediatrics 48, 3973.Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics 16, 143149.Google Scholar
Feinstein, C., Eliez, S., Blasey, C., & Reiss, A. L. (2002). Psychiatric disorders and behavioral problems in children with velocardiofacial syndrome: Usefulness as phenotypic indicators of schizophrenia risk. Biological Psychiatry 51, 312318.Google Scholar
Fine, S., Weissman, A., Gerdes, M., Pinto–Martin, J., Zackai, E., McDonald–McGinn, D., & Emanuel, B. S. (2005). Autism spectrum disorders and symptoms in children with moloecularly confirmed 22q11.2 deletion syndrome. Journal of Autism and Developmental Disorders 35, 461470.Google Scholar
Fletcher, J. M., Bohan, T. P., Brandt, M. E., Brookshire, B. L., Beaver, S. R., Francis, D. J., Davidson, K. C., Thompson, N. M., & Miner, M. E. (1992). Cerebral white matter and cognition in hydrocephalic children. Archives of Neurology 49, 818824.Google Scholar
Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., & Posner, M. I. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14.Google Scholar
Gerdes, M., Solot, C. B., Wang, P. P., Moss, E. M., LaRossa, D., Randall, P., Goldmuntz, E., Clark, B. J., Driscoll, D. A., Jawad, A., Emmanuel, B. S., McDonald–McGinn, D. M., Batshaw, M. L., & Zackai, E. H. (1999). Cognitive and behavior profile of preschool children with chromosome 22q11.2 deletion. American Journal of Medical Genetics 85, 127133.Google Scholar
Giannotti, A., Digilio, M. C., Marino, B., Mingarelli, R., & Dallapiccola, B. (1994). Cayler cardiofacial syndrome and del 22q11: Part of the CATCH22 phenotype. American Journal of Medical Genetics 53, 303304.Google Scholar
Glatt, S. J., Faraone, S. V., & Tsuang, M. T. (2003). Association between a functional catechol-O-methyltransferase gene polymorphism and schizophrenia: Meta-analysis of case–control and family-based studies. American Journal of Psychiatry 160, 469476.Google Scholar
Göbel, S., Walsh, V., & Rushworth, M. F. S. (2001). The mental number line and the human angular gyrus. NeuroImage 14, 12781289.Google Scholar
Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., Nowak, N. J., Joyner, A., Leblanc, G., Hatten, M. E., & Heintz, N. (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961), 917925.Google Scholar
Gothelf, D., Presburger, G., Zohar, A. H., Burg, M., Nahmani, A., Frydman, M., Shohat, M., Inbar, D., Aviram–Goldring, A., Yeshaya, J., Steinberg, T., Finkelstein, Y., Frisch, A., Weizman, A., & Apter, A. (2004). Obsessive–compulsive disorder in patients with velocardiofacial (22q11 deletion) syndrome. American Journal of Medical Genetics 126B, 99105.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry 160, 636645.Google Scholar
Graf, W. D., Unis, A. S., Yates, C. M., Sulzbacher, S., Dinulos, M. B., Jack, R. M., Dugaw, K. A., Paddock, M. N., & Parson, W. W. (2001). Catecholamines in patients with 22q11.2 deletion syndrome and the low-activity COMT polymorphism. Neurology 57, 410416.Google Scholar
Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General 121, 480506.Google Scholar
Greenwood, P. M., & Parasuraman, R. (2003). Normal genetic variation, cognition and aging. Behavioral and Cognitive Neuroscience Reviews 2, 278306.Google Scholar
Greenwood, P. M., Sunderland, T., Friz, J. L., & Parasuraman, R. (2000). Genetics and visual attention: Selective deficits in healthy adult carriers of the epsilon 4 allele of the apolipoprotein E gene. Proceedings of the National Academy of Sciences of the United States of America 97, 1166111666.Google Scholar
Grossman, M. H., Emanuel, B. S., & Budarf, M. L. (1992). Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1–q11.2. Genomics 12, 822825.Google Scholar
Henry, J. C., van Amelsvoort, T., Morris, R. G., Owen, M. J., Murphy, D. G., & Murphy, K. C. (2002). An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia 40, 471478.Google Scholar
Johnson, M. H., Halit, H., Grice, S. J., & Karmiloff–Smith, A. (2002). Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Developments in Psychopathology 14, 521536.Google Scholar
Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., Gos, A., Nestadt, G., Wolyniec, P. S., Lasseter, V. K., Eisen, H., Childs, B., Kazazian, H. H., Kucherlapati, R., Antonarakis, S. E., & Housman, D. E. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proceedings of the National Academy of Sciences of the United Sates of America 92, 76127616.Google Scholar
Kates, W. R., Burnette, C. P., Jabs, E. W., Rutberg, J., Murphy, A. M., Grados, M., Geraghty, M., Kaufmann, W. E., & Pearlson, G. D. (2001). Regional cortical white matter reductions in velocardiofacial syndrome: A volumetric MRI analysis. Biological Psychiatry 49, 677684.Google Scholar
Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science 303(5660), 10231026.Google Scholar
Kingstone, A., Friesen, C. K., & Gazzaniga, M. S. (2000). Reflexive joint attention depends in lateralized cortical connections. Psychological Science 11, 159166.Google Scholar
Kingstone, A., Grabowecky, M., Mangun, G. R., Valsangkar, M. A., & Gazzaniga, M. S. (1997). Paying attention to the brain. The study of selective visual attention in cognitive neuroscience. In J. Burak & J. T. Enns (Eds.), Attention, development, and psychopathology. New York: Guilford Press.
Lachman, H. M., Kelsoe, J. R., Remick, R. A., Sadovnick, A. D., Rapaport, M. H., Lin, M., Pazur, B. A., Roe, A. M., Saito, T., & Papolos, D. F. (1997). Linkage studies suggest a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome 22. American Journal of Medical Genetics 74, 121128.Google Scholar
Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243250.Google Scholar
Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry 45, 11151122.Google Scholar
Liu, H., Heath, S. C., Sobin, C., Roos, J. L., Galke, B. L., Blundell, M. L., Lenane, M., Robertson, B., Wijsman, E. M., Rapoport, J. L., Gogos, J. A., & Karayiorgou, M. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 99, 37173722.Google Scholar
Luck, S. J., Hillyard, S. A., Mangun, G. R., & Gazzaniga, M. S. (1989). Independent hemispheric attentional systems mediate visual search in split-brain patients. Nature 342, 543545.Google Scholar
Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry 159, 652654.Google Scholar
Mataro, M., Poca, M. A., Sahuquillo, J., Cuxart, A., Iborra, J., de la Calzada, M. D., & Junque, C. (2000). Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus. Journal of Neurology, Neurosurgery, and Psychiatry 68, 615621.Google Scholar
Maynard, T. M., Haskell, G. T., Peters, A. Z., Sikich, L., Lieberman, J. A., & LaMantia, A. S. (2003). A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proceedings of the National Academy of Sciences of the United States of America 100, 1443314438.Google Scholar
McDonald–McGinn, D. M., Driscoll, D. A., Bason, L., Christensen, K., Lynch, D., Sullivan, K., Canning, D., Zavod, W., Quinn, N., & Rome, J. (1995). Autosomal dominant “Opitz” GBBB syndrome due to a 22q11.2 deletion. American Journal of Medical Genetics 59, 103113.Google Scholar
McDonald–McGinn, D. M., Kirschner, R., Goldmuntz, E., Sullivan, K., Eicher, P., Gerdes, M., Moss, E. M., Solot, C. B., Wang, P. P., Jacobs, I., Handler, S., Knightly, C., Heher, K., Wilson, M., Ming, J. E., Grace, K., Driscoll, D. A., Pasquariello, P., Randall, P., LaRossa, D., Emanuel, B. S., & Zackai, E. H. (1999). The Philadelphia Story: The 22q11.2 deletion: Report on 250 patients. Genetic Counselling 10, 1124.Google Scholar
Mesulam, M. M., Nobre, A. C., Kim, Y.-H., Parrish, T. B., & Gitelman, D. R. (2001). Heterogeneity of cingulate contributions to spatial attention. NeuroImage 13, 10551072.Google Scholar
Moss, E. M., Batshaw, M. L., Solot, C. B., Gerdes, M., McDonald–McGinn, D. M., Driscoll, D. A., Emmanuel, B. S., Zackai, E. H., & Wang, P. P. (1999). Psychoeducational profile of the 22q11.2 microdeletion: A complex pattern. The Journal of Pediatrics 134, 193198.Google Scholar
Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry 56, 940945.Google Scholar
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology 67, 5383.Google Scholar
Niklasson, L., Rasmussen, P., Oskarsdottir, S., & Gillberg, C. (2001). Neuropsychiatric disorders in the 22q11 deletion syndrome. Genetics in Medicine 3, 7984.Google Scholar
Niklasson, L., Rasmussen, P., Oskarsdottir, S., & Gillberg, C. (2002). Chromosome 22q11 deletion syndrome (CATCH 22): Neuropsychiatric and neuropsychological aspects. Developmental Medicine and Child Neurology 44, 4450.Google Scholar
Papolos, D. F., Faedda, G. L., Veit, S., Goldberg, R., Morrow, B., Kucherlapati, R., & Shprintzen, R. J. (1996). Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: Does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder? American Journal of Psychiatry 153, 15411547.Google Scholar
Parasuraman, R., & Greenwood, P. M. (2004). Molecular genetics of visuospatial attention and working memory. In M. I. Posner (Ed.), Cognitive neuroscience of attention. New York: Guilford Press.
Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience 12, 461479.Google Scholar
Petersen, S. E., Robinson, D. L., & Morris, J. D. (1987a). Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97105.Google Scholar
Petersen, S. E., Robinson, D. L., & Morris, J. D. (1987b). Contributions of the pulvinar to visual spatial attention. Neuropsychologia, 25(1A), 97105.Google Scholar
Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). Single trial classification of parallel pre-attentive and serial attentive processing using functional magnetic resonance imaging. Proceedings of the Royal Society of London, Series B: Biological Sciences, 12371245.Google Scholar
Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? NeuroImage 15, 435446.Google Scholar
Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine 36, 893906.Google Scholar
Pinel, P., Le Clec'H, G., van de Moortele, P., Naccache, L., Le Bihan, D., & Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit for number comparison. NeuroReport 10(7), 14731479.Google Scholar
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology 32, 325.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience 13, 2542.Google Scholar
Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. The Journal of Neuroscience 4, 18631874.Google Scholar
Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1998). Cognitive deficits in obsessive–compulsive disorder on tests of frontal–striatal function. Biological Psychiatry 43, 348357.Google Scholar
Rourke, B. P., Ahmad, S. A., Collins, D. W., Hayman–Abello, B. A., Hayman–Abello, S. E., & Warriner, E. M. (2002). Child clinical/pediatric neuropsychology: Some recent advances. Annual Review of Psychology 53, 309339.Google Scholar
Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia 42, 10291040.Google Scholar
Sathian, K., Simon, T. J., Peterson, S., Patel, G. A., Hoffman, J. M., & Grafton, S. T. (1999). Neural evidence linking visual object enumeration and attention. Journal of Cognitive Neuroscience 11(1), 3651.Google Scholar
Shashi, V., Muddasani, S., Santos, C. C., Berry, M. N., Kwapil, T. R., Lewandowski, E., & Keshavan, M. S. (2004). Abnormalities of the corpus callosum in nonpsychotic children with chromosome 22q11 deletion syndrome. NeuroImage 21, 13991406.Google Scholar
Shprintzen, R. J., Goldberg, R. B., Lewin, M. L., Sidoti, E. J., Berkman, M. D., Argamaso, R. V., & Young, D. (1978). A new syndrome involving cleft palate, cardiac anomalies, typical faces, and learning disabilities: Velo-cardio-facial syndrome. Cleft Palate Journal 15, 5662.Google Scholar
Simon, T. J. (1997). Reconceptualizing the origins of number knowledge: A “non-numerical” approach. Cognitive Development 12, 349372.Google Scholar
Simon, T. J., Bearden, C. E., McDonald–McGinn, D. M., & Zackai, E. H. (2005). Visuospatial and numerical cognitive deficits in chromosome 22q11.2 deletion syndrome. Cortex 41, 131141.Google Scholar
Simon, T. J., Ding, L., Bish, J. P., McDonald–McGinn, D. M., Zackai, E. H., & Gee, J. C. (2005). Volumetric, connective and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: An integrative study. NeuroImage 25, 169180.Google Scholar
Sobin, C., Kiley–Brabeck, K., Daniels, S., Blundell, M., Anyane–Yeboa, K., & Karayiorgou, M. (2004). Networks of attention in children with the 22q11 deletion syndrome. Developmental Neuropsychology 26, 611626.Google Scholar
Swanson, J., Posner, M., Fosella, J., Wasdell, M., Sommer, T., & Fan, J. (2001). Genes and attention deficit hyperactivity disorder. Current Psychiatry Reports 3, 92100.Google Scholar
Swillen, A., Devriendt, K., Legius, E., Eyskens, B., Dumoulin, M., Gewillig, M., & Fryns, J. P. (1997). Intelligence and psychosocial adjustment in velocardiofacial syndrome: A study of 37 children and adolescents with VCFS. The Journal of Medical Genetics 34, 453458.Google Scholar
Swillen, A., Devriendt, K., Legius, E., Prinzie, P., Vogels, A., Ghesquiere, P., & Fryns, J. P. (1999). The behavioural phenotype in velo-cardio-facial syndrome (VCFS): From infancy to adolescence. Genetic Counselling 10, 7988.Google Scholar
Swillen, A., Vogels, A., Devriendt, K., & Fryns, J. P. (2000). Chromosome 22q11 deletion syndrome: Update and review of the clinical features, cognitive–behavioral spectrum, and psychiatric complications. American Journal of Medical Genetics 97, 128135.Google Scholar
Temple, E., & Posner, M. I. P. (1998). Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences of the United States of America 95, 78367841.Google Scholar
Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., Lowry, T. P., & Press, G. A. (1999). Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. Journal of Neuroscience 19(13), 56325643.Google Scholar
Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. New York: Cambridge University Press.
Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can tell us about spatial attention. Evidence for limited capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance 19, 331351.Google Scholar
Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. Psychological Review 101, 80102.Google Scholar
Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Sciences of the United States of America 95, 449414499.Google Scholar
Van Amelsvoort, T., Daly, E., Robertson, D., Suckling, J., Ng, V., Critchley, H., Owen, M. J., Henry, J., Murphy, K. C., & Murphy, D. G. M. (2001). Structural brain abnormalities associated with the deletion at chromosome 22q11. British Journal of Psychiatry 178, 412419.Google Scholar
van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior 77, 477482.Google Scholar
Velakoulis, D., & Pantelis, C. (1996). What have we learned from functional imaging studies in schizophrenia? The role of frontal, striatal and temporal areas. The Australian and New Zealand Journal of Psychiatry 30, 195209.Google Scholar
Wang, P. P., Woodin, M. F., Kreps–Falk, R., & Moss, E. M. (2000). Research on behavioral phenotypes: Velocardiofacial syndrome (deletion 22q11.2). Developmental Medicine and Child Neurology 42, 422427.Google Scholar
Ward, R., Danziger, S., Owen, V., & Rafal, R. D. (2002). Deficits in spatial coding and feature binding following damage to the spatiotopic maps in the human pulvinar. Nature Neuroscience 5, 99100.Google Scholar
Woodin, M. F., Wang, P. P., Aleman, D., McDonald–McGinn, D. M., Zackai, E. H., & Moss, E. M. (2001). Neuropsychological profile of children and adolescents with the 22q11.2 microdeletion. Genetics in Medicine 3, 3439.Google Scholar
Woods, C. G. (2004). Human microcephaly. Current Opinion in Neurobiology 14, 16.Google Scholar
Zakzanis, K. K., & Heinrichs, R. W. (1999). Schizophrenia and the frontal brain: A quantitative review. Journal of the International Neuropsychological Society 5, 556566.Google Scholar