Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T02:17:26.472Z Has data issue: false hasContentIssue false

Gene × Environment contributions to autonomic stress reactivity in youth

Published online by Cambridge University Press:  17 December 2017

Andrea G. Allegrini
Affiliation:
Vrije Universiteit Amsterdam
Brittany E. Evans
Affiliation:
Radboud University
Susanne de Rooij
Affiliation:
Vrije Universiteit Amsterdam Academic Medical Center of the University of Amsterdam
Kirstin Greaves-Lord
Affiliation:
Erasmus University Medical Center
Anja C. Huizink*
Affiliation:
Vrije Universiteit Amsterdam
*
Address correspondence and reprint requests to: Anja C. Huizink, Sections of Clinical Developmental Psychology and Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands; E-mail: [email protected].

Abstract

Dysregulated physiological stress reactivity has been suggested to impact the development of children and adolescents with important health consequences throughout the life span. Both environmental adversity and genetic predispositions can lead to physiological imbalances in stress systems, which in turn lead to developmental differences. We investigated genetic and environmental contributions to autonomic nervous system reactivity to a psychosocial stressor. Furthermore, we tested whether these effects were consistent with the differential susceptibility framework. Composite measures of adverse life events combined with socioeconomic status were constructed. Effects of these adversity scores in interaction with a polygenic score summarizing six genetic variants, which were hypothesized to work as susceptibility factors, were tested on autonomic nervous system measures as indexed by heart rate and heart rate variability. Results showed that carriers of more genetic variants and exposed to high adversity manifested enhanced heart rate variability reactivity to a psychosocial stressor compared to carriers of fewer genetic variants. Conversely, the stress procedure elicited a more moderate response in these individuals compared to carriers of fewer variants when adversity was low.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The Youth Research in The Netherlands (JOiN) study was conducted by the Erasmus University Medical Center, Department of Child and Adolescent Psychiatry/Psychology. We are grateful to all participants and their parents. We also thank Olga Husson for her assistance in data collection. The JOiN study was financially supported by ZonMW Grant 3116.0002 and ERAB Grant 0609.

References

Aftanas, L., Loktev, K., Miroshnikova, P., Gafarov, V., & Gromova, E. (2014). Polymorphism of dopamine transporter gene DAT1 and individual variability of defense cardiac response in humans. Bulletin of Experimental Biology and Medicine, 156, 845848.Google Scholar
Alexander, N., Osinsky, R., Mueller, E., Schmitz, A., Guenthert, S., Kuepper, Y., & Hennig, J. (2011). Genetic variants within the dopaminergic system interact to modulate endocrine stress reactivity and recovery. Behavioural Brain Research, 216, 5358.Google Scholar
Amone-P'Olak, K., Ormel, J., Huisman, M., Verhulst, F. C., Oldehinkel, A. J., & Burger, H. (2009). Life stressors as mediators of the relation between socioeconomic position and mental health problems in early adolescence: The TRAILS study. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 10311038.Google Scholar
Ansell, E. B., Rando, K., Tuit, K., Guarnaccia, J., & Sinha, R. (2012). Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biological Psychiatry, 72, 5764.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.Google Scholar
Baum, A., Garofalo, J., & Yali, A. (1999). Socioeconomic status and chronic stress: Does stress account for SES effects on health? Annals of the New York Academy of Sciences, 896, 131144.Google Scholar
Beach, S. R., Lei, M. K., Brody, G. H., Simons, R. L., Cutrona, C., & Philibert, R. A. (2012). Genetic moderation of contextual effects on negative arousal and parenting in African-American parents. Journal of Family Psychology, 26, 46.Google Scholar
Beauchaine, T. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214. doi:10.1017/s0954579401002012.Google Scholar
Belsky, J. (1997). Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment. Child Development, 68, 598600.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304. doi:10.1111/j.1467-8721.2007.00525.x.Google Scholar
Belsky, J., Newman, D. A., Widaman, K. F., Rodkin, P., Pluess, M., Fraley, R. C., … Roisman, G. I. (2015). Differential susceptibility to effects of maternal sensitivity? A study of candidate plasticity genes. Development and Psychopathology, 27, 725746.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi:10.1037/a0017376.Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289300.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism—The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459487. doi:10.1037/0033-295x.98.4.459.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 37, 658665.Google Scholar
Burt, K. B., & Obradović, J. (2013). The construct of psychophysiological reactivity: Statistical and psychometric issues. Developmental Review, 33, 2957.Google Scholar
Carpenter, L. L., Shattuck, T. T., Tyrka, A. R., Geracioti, T. D., & Price, L. H. (2011). Effect of childhood physical abuse on cortisol stress response. Psychopharmacology, 214, 367375.Google Scholar
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389. doi:10.1126/science.1083968.Google Scholar
Champagne, F. A. (2013). Early environments, glucocorticoid receptors, and behavioral epigenetics. Behavioral Neuroscience, 127, 628636. doi:10.1037/a0034186.Google Scholar
Chitbangonsyn, S. W., Mahboubi, P., Walker, D., Rana, B., Diggle, K., Timberlake, D., … O'Connor, D. (2003). Physical mapping of autonomic/sympathetic candidate genetic loci for hypertension in the human genome: A somatic cell radiation hybrid library approach. Journal of Human Hypertension, 17, 319324.Google Scholar
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of CRHR1, 5-HTTLPR, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 1125.Google Scholar
Clifford, S., & Lemery-Chalfant, K. (2015). Molecular genetics of resilience. In Pluess, M. (Ed.), Genetics of psychological well-being: The role of heritability and genetics in positive psychology. New York: Oxford University Press.Google Scholar
Del Giudice, M. (2017). Statistical tests of differential susceptibility: Performance, limitations, and improvements. Development and Psychopathology. Advance online publication. doi:10.1017/S0954579416001292.Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592.Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391. doi:10.1037/0033-2090.130.3.355Google Scholar
Dieleman, G. C., van der Ende, J., Verhulst, F. C., & Huizink, A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35, 12231234.Google Scholar
Doom, J. R., & Gunnar, M. R. (2013). Stress physiology and developmental psychopathology: Past, present, and future. Development and Psychopathology, 25, 13591373. doi:10.1017/s0954579413000667.Google Scholar
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLOS Genetics, 9, e1003348.Google Scholar
Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162171.Google Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary-developmental theory. Development and Psychopathology, 17, 303328. doi:10.1017/s0954579405050157.Google Scholar
Evans, B. E. (2013). Examining physiological stress (re)activity as an endophenotype for adolescent substance use (Doctoral dissertation, VU University Amsterdam).Google Scholar
Evans, B. E., Greaves-Lord, K., Euser, A. S., Tulen, J. H. M., Franken, I. H. A., & Huizink, A. C. (2013). Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PlOS ONE, 8, e61724.Google Scholar
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14, 245258.Google Scholar
Gatt, J., Nemeroff, C., Dobson-Stone, C., Paul, R., Bryant, R., Schofield, P., … Williams, L. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681695.Google Scholar
Gunnar, M., Frenn, K., Wewerka, S. S., & van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34, 6275.Google Scholar
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538. doi:10.1017/S0954579401003066.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.Google Scholar
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.Google Scholar
Heleniak, C., McLaughlin, K. A., Ormel, J., & Riese, H. (2016). Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology. Biological Psychology, 120, 108119.Google Scholar
Hugdahl, K. (Ed.) (1995). Psychophysiology: The mind-body perspective. Cambridge, MA: Harvard University Press.Google Scholar
Huizink, A. C., Greaves-Lord, K., Evans, B. E., Euser, A. S., van der Ende, J., Verhulst, F. C., & Franken, I. H. (2012). Youth in the Netherlands Study (JOiN): Study design. BMC Public Health, 12, 1.Google Scholar
Jokela, M., Lehtimäki, T., & Keltikangas-Järvinen, L. (2007). The serotonin receptor 2A gene moderates the influence of parental socioeconomic status on adulthood harm avoidance. Behavior Genetics, 37, 567574.Google Scholar
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824.Google Scholar
Kirschbaum, C. (2010). Trier Social Stress Test. In Stolerman, I. P. (Ed.), Encyclopedia of psychopharmacology: Trier Social Stress Test. Berlin: Springer-Verlag.Google Scholar
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”: A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.Google Scholar
Lovallo, W. R. (2005). Stress and health: Biological and psychological interactions. Thousand Oaks, CA: Sage.Google Scholar
Lovallo, W. R. (2010). Cardiovascular responses to stress and disease outcomes: A test of the reactivity hypothesis. Hypertension, 55, 842843.Google Scholar
Lovallo, W. R. (2011). Do low levels of stress reactivity signal poor states of health? Biological Psychology, 86, 121128. doi:10.1016/j.biopsycho.2010.01.006.Google Scholar
Lovallo, W. R. (2013). Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors. International Journal of Psychophysiology, 90, 816. doi:10.1016/j.ijpsycho.2012.10.006.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: Studies from the Oklahoma Family Health Patterns Project. Alcoholism: Clinical and Experimental Research, 37, 616623.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012). Lifetime adversity leads to blunted stress axis reactivity: Studies from the Oklahoma Family Health Patterns Project. Biological Psychiatry, 71, 344349. doi:10.1016/j.biopsych.2011.10.018.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639.Google Scholar
Manuck, S. B., Olsson, G., Hjemdahl, P., & Rehnqvist, N. (1992). Does cardiovascular reactivity to mental stress have prognostic value in postinfarction patients? A pilot study. Psychosomatic Medicine, 54, 102108.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.Google Scholar
McLaughlin, K. A. (2016). Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 45, 361382.Google Scholar
McLaughlin, K. A., Kubzansky, L. D., Dunn, E. C., Waldinger, R., Vaillant, G., & Koenen, K. C. (2010). Childhood social environment, emotional reactivity to stress, and mood and anxiety disorders across the life course. Depression and Anxiety, 27, 10871094.Google Scholar
Middlebrooks, J. S., & Audage, N. C. (2008). The effects of childhood stress on health across the lifespan. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.Google Scholar
Mueller, A., Strahler, J., Armbruster, D., Lesch, K.-P., Brocke, B., & Kirschbaum, C. (2012). Genetic contributions to acute autonomic stress responsiveness in children. International Journal of Psychophysiology, 83, 302308.Google Scholar
Mulder, L. J. M., Van Dellen, H. J., van der Meulen, P., & Opheikens, B. (1988). CARSPAN: A spectral analysis program for cardiovascular time series. In Maarse, F. J., Mulder, L. J. M., & Akkerman, A. (Eds.), Computers in psychology: methods, instrumentation and psychodiagnostics (pp. 3947). Lisse: Swets and Zeitlinger.Google Scholar
Musante, L., Treiber, F. A., Kapuku, G., Moore, D., Davis, H., & Strong, W. B. (2000). The effects of life events on cardiovascular reactivity to behavioral stressors as a function of socioeconomic status, ethnicity, and sex. Psychosomatic Medicine, 62, 760767.Google Scholar
National Scientific Council on the Developing Child. (2014). Excessive stress disrupts the architecture of the developing brain: Working Paper 3. Retreived from http://www.developingchild.harvard.edu.Google Scholar
Neijts, M., van Lien, R., Kupper, N., Boomsma, D., Willemsen, G., & de Geus, E. J. (2015). Heritability and temporal stability of ambulatory autonomic stress reactivity in unstructured 24-hour recordings. Psychosomatic Medicine, 77, 870881.Google Scholar
Obradović, J. (2012). How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development? Development and Psychopathology, 24, 371387.Google Scholar
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.Google Scholar
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289.Google Scholar
Oldehinkel, A. J., Ormel, J., Bosch, N. M., Bouma, E. M. C., Van Roon, A. M., Rosmalen, J. G. M., & Riese, H. (2011). Stressed out? Associations between perceived and physiological stress responses in adolescents: The TRAILS study. Psychophysiology, 48, 441452. doi:10.1111/j.1469-8986.2010.01118.x.Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2014). Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 39, 12451253.Google Scholar
Phillips, A. C., Carroll, D., Ring, C., Sweeting, H., & West, P. (2005). Life events and acute cardiovascular reactions to mental stress: A cohort study. Psychosomatic Medicine, 67, 384392.Google Scholar
Piccolo, L. d. R., Sbicigo, J. B., Grassi-Oliveira, R., & Fumagalli de Salles, J. (2014). Do socioeconomic status and stress reactivity really impact neurocognitive performance? Psychology and Neuroscience, 7, 567.Google Scholar
Plomin, R. (2013). Child development and molecular genetics: 14 years later. Child Development, 84, 104120.Google Scholar
Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience & Biobehavioral Reviews, 19, 225233.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143. doi:10.1016/j.biopsycho.2006.06.009.Google Scholar
Roisman, G. I. (2007). The psychophysiology of adult attachment relationships: Autonomic reactivity in marital and premarital interactions. Developmental Psychology, 43, 39.Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.Google Scholar
Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838.Google Scholar
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology, 5, 1040.Google Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21, 8797. doi:10.1017/s0954579409000066Google Scholar
Sprangers, M. A., Thong, M. S., Bartels, M., Barsevick, A., Ordoñana, J., Shi, Q., … Singh, J. A. (2014). Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: An update. Quality of Life Research, 23, 19972013.Google Scholar
Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C., & Liberzon, I. (2014). Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology, 39, 22442251.Google Scholar
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 4768.Google Scholar
Sumner, J. A., McLaughlin, K. A., Walsh, K., Sheridan, M. A., & Koenen, K. C. (2015). Caregiving and 5-HTTLPR genotype predict adolescent physiological stress reactivity: Confirmatory tests of Gene × Environment interactions. Child Development, 86, 985994.Google Scholar
Tick, N. T., van der Ende, J., & Verhulst, F. C. (2007). Twenty-year trends in emotional and behavioral problems in Dutch children in a changing society. Acta Psychiatrica Scandinavica, 116, 473482. doi:10.1111/j.1600-0447.2007.01068.x.Google Scholar
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L. L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic-pituitary-adrenal axis reactivity. Biological Psychiatry, 66, 681685.Google Scholar
van Dijk, A. E., van Lien, R., van Eijsden, M., Gemke, R. J., Vrijkotte, T. G., & de Geus, E. J. (2013). Measuring cardiac autonomic nervous system (ANS) activity in children. Journal of Visualized Experiments, 74, e50073.Google Scholar
Van Steenis, H. G. (2002). On time-frequence analysis of heart rate variability. Unpublished manuscript, Erasmus University Rotterdam. Retrieved from http://hdl.handle.net/1765/31433.Google Scholar
Van Steenis, H. G., Tulen, J. H. M., & Mulder, L. J. M. (1994). Heart-rate-variability spectra based on nonequidistant sampling—The spectrum of counts and the instantaneous heart-rate spectrum. Medical Engineering and Physics, 16, 355362. doi:10.1016/1350-4533(90)90001-o.Google Scholar
Wray, N. R., Goddard, M. E., & Visscher, P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research, 17, 15201528.Google Scholar
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.Google Scholar
Supplementary material: File

Allegrini et al. supplementary material

Tables S1-S2 and Figures S1-S3

Download Allegrini et al. supplementary material(File)
File 76.2 KB