Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T19:11:10.882Z Has data issue: false hasContentIssue false

Early adversity and mechanisms of plasticity: Integrating affective neuroscience with developmental approaches to psychopathology

Published online by Cambridge University Press:  01 November 2005

SETH D. POLLAK
Affiliation:
University of Wisconsin at Madison

Abstract

Interest in the effects of early adversity on children's development reflects contemporary emphases on early experience in the behavioral sciences and plasticity in the neurosciences. Over the past decade, powerful new tools and approaches for understanding the neural circuitry involved in emotion have become increasingly available. Yet, research in developmental psychopathology has not reaped the full benefits of affective neuroscience approaches and methods. Integration of affective neuroscience approaches can excavate developmental mechanisms, thereby advancing knowledge about the etiology, prevention, and treatment of mental health problems in children. Here, we consider two general principles that can guide understanding of plasticity in the neural circuitry of emotion systems and the development of psychopathology.The author was generously supported by the National Institutes of Mental Health (MH 61285, MH 68858) and by the University of Wisconsin. Elizabeth Shirtcliff, Alison Wismer Fries, Jessica Shackman, and Julia Kim–Cohen provided thoughtful comments on an early draft of this paper. The author also thanks Dante Cicchetti and Michael Posner for their critical reviews of the manuscript and Erin Henigan for help with preparation of this manuscript.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry 52, 16551658.Google Scholar
Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews 1, 2161.Google Scholar
Adolphs, R., Baron–Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience 14, 12641274.Google Scholar
Adolphs, R., Tranel, D., Hamann, S., Young, A., Calder, A., Anderson, A., Phelps, E., Lee, G. P., & Damasio, A. R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37, 11111117.Google Scholar
Aggleton, J. P., & Young, A. W. (2000). The enigma of the amygdala: On its contribution to human emotion. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 106128). London: Oxford University Press.
Arnsten, A. F., & Goldman–Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry 55, 362368.Google Scholar
Axelrod, J., & Reisine, T. D. (1984). Stress hormones: Their interaction and regulation. Science 224, 452459.Google Scholar
Bauman, M. D., Lavenex, P., Mason, W. A., Capitanio, A., & Amaral, D. (2004). The development of mother–infant interactions after neonatal amygdala lesions in Rhesus monkeys. Journal of Neuroscience 24, 711721.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 715.Google Scholar
Bechara, A., Damasio, H., & Damasio, A. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 295307.Google Scholar
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 11151118.Google Scholar
Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature 403, 309312.Google Scholar
Benes, F. M., Taylor, J. B., & Cunningham, M. C. (2000). Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: Implications for the development of psychopathology. Cerebral Cortex 10, 10141027.Google Scholar
Berger, B., & Verney, C. (1984). Development of the catecholamine innervation in rat neocortex. In L. Descarries, T. R. Reader, & H. H. Jasper (Eds.), Monoamine innervation of cerebral cortex (pp. 95121). New York: Allen R. Liss.
Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127, 11081126.Google Scholar
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28, 309369.Google Scholar
Bigelow, A. E., & DeCoste, C. (2003). Sensitivity to social contingency from mothers and strangers in 2-, 4-, and 6-month-old infants. Infancy 4, 111140.Google Scholar
Bischof, N. (1975). A systems approach toward the functional connections of attachment and fear. Child Development 46, 801817.Google Scholar
Black, J. E., Jones, T. A., Nelson, C. A., & Greenough, W. T. (1998). Neuronal plasticity and the developing brain. In N. E. Alessi, J. T. Coyle, S. I. Harrison, & S. Eth (Eds.), Handbook of child and adolescent psychiatric science and treatment (pp. 3153). New York: Wiley.
Blinkov, S. M., & Glezer, I. I. (1968). The human brain in figures and tables. A quantitative handbook. New York: Plenum Press.
Boucsein, K., Weniger, G., Mursch, K., Steinhoff, B. J., & Irle, E. (2001). Amygdala lesion in temporal lobe epilepsy subjects impairs associative learning of emotional facial expressions. Neuropsychologia 39, 231236.Google Scholar
Bourgeois, J.-P. (1993). Synaptogenesis in the prefrontal cortex of the macaque. In B. de Boysson–Bardies & S. de Schonen (Eds.), Developmental neurocognition: Speech and face processing in the first year of life (pp. 3139). New York: Kluwer Academic/Plenum Press.
Braun, K., Lange, E., Metzger, M., & Poeggel, G. (1999). Maternal separation followed by early social deprivation affects the development of monoaminergic fiber systems in the medial prefrontal cortex of Octodon degus. Neuroscience 95, 309318.Google Scholar
Broks, P., Young, A. W., Maratos, E. J., Coffey, P. J., Calder, A. J., Isaac, C. L., Mayes, A. R., Hodges, J. R., Montaldi, D., Cezayirli, E., Roberts, N., & Hadley, D. (1998). Face processing impairments after encephalitis: Amygdala damage and recognition of fear. Neuropsychologia 36, 5970.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Neuroscience 4, 215222.Google Scholar
Calder, A. J., Young, A. W., & Rowland, D. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology 13, 699745.Google Scholar
Caldji, C., Diorio, J., & Anisman, H. (2004). Maternal behavior regulates benzodiazepine/GABA-sub(A) receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology 29, 13441352.Google Scholar
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., & Noll, D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747749.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite A., &Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301, 386389.Google Scholar
Cicchetti, D., & Manly, J. T. (2001). Operationalizing child maltreatment: Developmental processes and outcomes. Developmental and Psychopathology 13, 755757.Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology 6, 533549.Google Scholar
Cole, P. M., Martin, S. E., & Dennis, T. A. (2004). Emotion regulation as a scientific construct: Methodological challenges and directions for child development research. Child Development 75, 317333.Google Scholar
Compton, R. J., Banich, M., Mohanty, A., Milham, M. P., Herrington, J., Miller, G. A., Scalf, P., Webb, A., & Heller, W. (2003). Paying attention to emotion: An fMRI investigation of cognitive and emotional Stroop tasks. Cognitive, Affective, and Behavioral Neuroscience 3, 8196.Google Scholar
Critchley, H. D., & Rolls, E. T. (1996). Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. Journal of Neurophysiology 75, 16731686.Google Scholar
Dahl, R. E. (1996). The regulation of sleep and arousal: Development and psychopathology. Development and Psychopathology 8, 327.Google Scholar
Damasio, A. R. (1994). Descartes' error. New York: Putnam.
D'Amato, R. J., Blue, M., Largent, B., Lynch, D., Leobetter, D., & Molliver, M. (1987). Ontogeny of the serotonergic projection of rat neocortex: Transient expression of a dense innervation of primary sensory areas. Proceedings of the National Academy of Science of the United States of America 84, 43224326.Google Scholar
Datla, K. P., Ahier, R. G., Young, A. M., Gray, J. A., & Joseph, M. H. (2002). Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. European Journal of Neuroscience 16, 19871993.Google Scholar
Davidson, R. J. (2003). Seven sins in the study of emotion: Correctives from affective neuroscience. Brain and Cognition 52, 129132.Google Scholar
Davidson, R. J., Putnam, K., & Larson, C. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science 289, 591594.Google Scholar
Dawson, G., Hessl, D., & Frey, K. (1994). Social influences on early developing biological and behavioral systems related to risk for affective disorder. Development and Psychopathology 6, 759779.Google Scholar
de Kloet, E. R., & Oitzl, M. S. (2003). Who cares for a stressed brain? The mother, the kid or both? Neurobiology of Aging 24, 6165.Google Scholar
De Renzi, E. (1997). Prosopagnosia. In T. E. Feinberg & M. J. Farah (Eds.), Behavioral neurology and neuropsychology (pp. 245255). New York: McGraw–Hill.
Diorio, D., Viau, V., & Meaney, M. J. (1993). The role of the medial prefrontal cortex (cingulated gyrus) in the regulation of hypothalamic–pituitary–adrenal responses to stress. Journal of Neuroscience, 13, 3847.Google Scholar
Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology 48, 269297.Google Scholar
Emery, N. J., & Amaral, D. (2000). The role of the amygdala in primate social cognition. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 156191). London: Oxford University Press.
Emery, N. J., Capitanio, J. P., Mason, W. A., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2001). The effects of bilateral lesions of the amygdala on dyadic social interactions in Rhesus monkeys (Macaca mulatta). Behavioral Neuroscience 115, 515544.Google Scholar
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews 27, 233246.Google Scholar
Eslinger, P. J., Flaherty–Craig, C. V., & Benton, A. L. (2004). Developmental outcomes after early prefrontal cortex damage. Brain and Cognition 55, 84103.Google Scholar
Fichtenholtz, H. M., Dean, H. L., Dillon, D. G., Yamasaki, H., McCarthy, G., & LaBar, K. S. (2004). Emotion-attention network interactions during a visual oddball task. Cognitive Brain Research 20, 6789.Google Scholar
Gaffan, D., & Parker, A. (2000). Mediodorsal thalamic function in scene memory in Rhesus monkeys. Brain 123, 816827.Google Scholar
Gehring, W. J., & Knight, R. T. (2002). Lateral prefrontal damage affects processing selection but not attention switching. Cognitive Brain Research 13, 267279.Google Scholar
Gottfried, J. A., O'Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 11041107.Google Scholar
Goldberg, M. E., Bisley, J., Powell, K. D., Gottlieb, J., & Kusunoki, M. (2002). The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Annals of the New York Academy of Sciences 956, 205215.Google Scholar
Goldman–Rakic, P. S., Bourgeois, J. A., & Rakic, P. (1997). Synaptic substrate of cognitive development. Life span analysis of synaptogenesis in the prefrontal cortex of nonhuman primate. In Development of prefrontal cortex. Evolution, neurobiology, and behavior. Baltimore, MD: Paul H. Brooks.
Grace, A. A. (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research Review 31, 330341.Google Scholar
Gunnar, M. R. (2000). Early adversity and the development of stress reactivity and regulation. In C. A. Nelson (Ed.), The effects of adversity on neurobehavioral development: Minnesota Symposia on Child Psychology (pp. 163200). Mahwah, NJ: Erlbaum.
Harlow, H. F., Harlow, M. K., Suomi, S. J. (1971). From thought to therapy: Lessons from a primate laboratory. American Scientist 59, 538549.Google Scholar
Heilman, K. M. (1994). Emotion and the brain: A distributed modular network mediating emotional experience. In D. W. Zaidel (Ed.), Neuropsychology (pp. 139158). San Diego, CA: Academic Press.
Heidbreder, C. A., Weiss, I. C., Domeney, A. M., Pryce, C., Homberg, J., Hedou, G., Feldon, J., Moran, M. C., & Nelson, P. (2000). Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100, 749768.Google Scholar
Huttenlocker, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia 28, 517527.Google Scholar
Insel, T. R. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences of the United States of America, 89, 5981.Google Scholar
Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry 154, 726735.Google Scholar
Insel, T. R. (2003). Is social attachment an addictive disorder? Physiology and Behavior 79, 351357.Google Scholar
Insel, T. R., & Fernald, R. D. (2004). How the brain processes social information: Searching for the social brain. Annual Review of Neuroscience 27, 697722.Google Scholar
Jinks, A. L., & McGregor, I. S. (1997). Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Research 772, 181190.Google Scholar
Johnston, M. V. (1988). Biochemistry of neurotransmitters in cortical development. In A. Peter & E. G. Jones (Eds.), Cerebral cortex (pp. 211236). New York: Plenum Press.
Kalynchuk, L. E., & Meaney, M. J. (2003). Amygdala kindling increases fear responses and decreases glucocorticoid receptor mRNA expression in hippocampal regions. Progress in Neuropsychopharmacology and Biological Psychiatry 27, 12251234.Google Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17, 43024311.Google Scholar
Kendrick, K. M., Keverne, E. B., Baldwin, B. A., & Sharman, D. F. (1986). Cerebrospinal fluid levels of acetylcholinesterase, monoamines and oxytocin during labor, parturition, vaginocervical stimulation, lamb separation and suckling in sheep. Neuroendocrinology 44, 149156.Google Scholar
King, J. A., Tenney, J., Rossi, V., Colamussi, L., & Burdick, S. (2003). Neural substrates underlying impulsivity. Annals of the New York Academy of Sciences 1008, 160169.Google Scholar
Kluver, H., & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry 42, 979997.Google Scholar
Kostovic, I., Skavic, J., & Strinovic, D. (1988). Acetylcholinesterase in the human frontal associative cortex during the period of cognitive development: Early laminar shifts and later innervation of pyramidal neurons. Neuroscience Letters 90, 107112.Google Scholar
LaBerge, D. (1995). Attentional processing: The brain's art of mindfulness. Cambridge, MA: Harvard University Press.
Lamb, M. E. (1981). The development of social expectations in the first year of life. In M. E. Lamb & L. R. Sherrod (Eds.), Infant social cognition: Empirical and theoretical considerations (pp. 155175). Mahwah, NJ: Erlbaum.
Lane, R. D., Fink, G. R., Chau, P. M. L., & Dolan, R. J. (1997). Neural activation during selective attention to subjective emotional responses. NeuroReport 8, 39693972.Google Scholar
LeBar, K. S., & LeDoux, J. E. (2003). Fear conditioning in relation to affective neuroanatomy. In R. J. Davidson & K. R. Scherer (Eds.), Handbook of affective sciences. London: Oxford University Press.
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.
Levitt, P., & Rakic, P. (1982). The time of genesis, embryonic origin and differentiation of brainstem monoamine neurons in the Rhesus monkey. Brain Research 4, 3537.Google Scholar
Li, X. B., Inoue, T., Nakagawa, S., & Koyama, T. (2004). Effect of mediodorsal thalamic nucleus lesion on contextual fear conditioning in rats. Brain Research 1008, 261272.Google Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience 3, 799806.Google Scholar
Lovic, V., & Fleming, A. (2004). Artificially-reared female rats show reduced prepulse inhibition and deficits in the attentional set shifting task-reversal of effects with maternal-like licking stimulation. Behavioural Brain Research 148, 209219.Google Scholar
Lucas, L., Celen, Z., Tamashiro, K., Blanchard, R., Blanchard, D., Markham, C., Sakai, R., & Mcewen, B. (2004). Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience 124, 449457.Google Scholar
Manly, J. T., Kim, J. E., Rogosch, F. A., & Cicchetti, D. (2001). Dimensions of child maltreatment and children's adjustment: Contributions of developmental timing and subtype. Development and Psychopathology 13, 759782.Google Scholar
Marinelli, M., & Piazza, P. V. (2002). Interaction between glucocorticoid hormones, stress and psychostimulant drugs. European Journal of Neuroscience 16, 387394.Google Scholar
Marrocco, R. T., Witte, E. A., & Davidson, M. C. (1994). Arousal systems. Current Opinion in Neurobiology 4, 166170.Google Scholar
Mayberg, H. (2002). Mapping mood: An evolving emphasis on frontal–limbic interactions. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 376391). London: Oxford University Press.
Meaney, M., Brake, B., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology 27, 127138.Google Scholar
Mirsky, A. F. (1996). Disorders of attention: A neuropsychological perspective. In G. R. Lyon & N. A. Krasnegor (Eds.), Attention, memory, and executive function (pp. 7195). Baltimore, MD: Paul H. Brookes.
Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 6577). New York: Guilford Press.
Motter, B. C. (1998). Neurophysiology of visual attention. In R. Parasuraman (Ed.), The attentive brain (pp. 5170). Cambridge, MA: MIT Press.
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience 4, 95102.Google Scholar
Passetti, F., Dalley, J. W., & Robbins, T. W. (2003). Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology 165, 136145.Google Scholar
Poeggel, G., Helmeke, C., Abraham, A., Schwabe, T., Friedrich, P., & Braun, K. (2003). Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala. Proceedings of the National Academy of Sciences of the United States of America 100, 1613716142.Google Scholar
Poeggel, G., Lange, E., Hase, C., Metzger, M., Gulyaeva, N., & Braun, K. (1999). Maternal separation and early social deprivation in Octodon degus: Quantitative changes of nicotinamide adenine dinucleotide phosphate-diaphorase-reactive neurons in the prefrontal cortex and nucleus assumbens. Neuroscience 94, 497504.Google Scholar
Pollak, S. D. (2004). Experience-dependent affective learning and risk for psychopathology in children. Annals of the New York Academy of Sciences, 102111.Google Scholar
Popik, P., Vetulani, J., & Van Ree, J. M. (1992). Low doses of oxytocin facilitate social recognition in rats. Psychopharmacology 106, 7174.Google Scholar
Posner, M. I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America 91, 73987403.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience 13, 2542.Google Scholar
Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology 12, 427441.Google Scholar
Price, J. L. (1999). Prefrontal cortical networks related to visceral function and mood. Annals of the New York Academy of Sciences 877, 383396.Google Scholar
Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C] raclopride. Journal of Neuroscience 24, 28252831.Google Scholar
Rafal, R. D. (1996). Visual attention: Converging operations from neurology and psychology. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 139192). Washington, DC: American Psychological Association.
Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999). Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience 19, 45854594.Google Scholar
Redgrave, P., Prescott, T. J., Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error. Trends in Neurosciences 22, 146151.Google Scholar
Roland, P. E. (1993). Brain activation. New York: Wiley–Liss.
Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, and Psychiatry 57, 15181524.Google Scholar
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review 105, 325350.Google Scholar
Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews 21, 341359.Google Scholar
Sanchez, M. M., Hearn, E. F., Do, D., Rilling, J. K., & Herndon, J. G. (1998). Differential rearing affects corpus callosum size and cognitive function of Rhesus monkeys. Brain Research 812, 3849.Google Scholar
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology 13, 419450.Google Scholar
Sato, W., Kochiyama, T., Yoshikawa, S., Naito, E., & Matsumura, M. (2004). Enhanced neural activity in response to dynamic facial expressions of emotion: An fMRI study. Cognitive Brain Research 20, 8191.Google Scholar
Schliebs, R., Kullman, E., & Bigl, V. (1986). Development of glutamate binding sites in the visual structures of the rat brain: Effect of visual pattern deprivation. Biomedical Biophysica Acta 45, 44954506.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80, 127.Google Scholar
Shackman, J. E., & Pollak, S. D. (2005). Experiential influences on multimodal perception of emotion. Child Development 76, 11161126.Google Scholar
Shea, A., Walsh, C., MacMillan, H., & Steiner, M. (2004). Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology 30, 162178.Google Scholar
Siegel, S. J., Ginsberg, S. D., Hof, P. R., Foote, S. L., Young, W. G., & Draemer, G. W. (1993). Effects of social deprivation in prepubescent Rhesus monkeys: Immunohistochemical analysis of the neurofilament protein triplet in the hippocampal formation. Brain Research 619, 299305.Google Scholar
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience 2, 859861.Google Scholar
Stevenson, C. W., & Gratton, A. (2003). Basolateral amygdala modulation of the nucleus accumbens dompamine response to stress: Role of the medial prefrontal cortex. European Journal of Neuroscience 17, 12871295.Google Scholar
Tarr, M. J., & Gauthier, I. (2000). FFA: A flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience 3, 764769.Google Scholar
Vincent, S. L., Khan, Y., & Benes, F. M. (1995). Cellular and co-localization of dopamine with D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19, 112120.Google Scholar
Wismer Fries, A. B., Ziegler, T., Kurian, J., Jacoris, S., & Pollak, S. D. (in press). Early experience in humans is associated with changes in neuro-peptides critical for regulating social behaviour. Proceedings of the National Academy of Sciences of the United States of America.
Witt, D. M., Carter, C. S., & Walton, D. (1990). Central and peripheral effects of oxytocin administration in prairie voles. Pharmacology and Biochemical Behavior 37, 6369.Google Scholar
Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron 23, 747764.Google Scholar
Ziabreva, I., Schnabel, R., Poeggel, G., & Braun, K. (2003). Mother's voice “buffers” separation-induced receptor changes in the prefrontal cortex of Octodon degus. Neuroscience 119, 433441.Google Scholar