Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-11T08:55:29.826Z Has data issue: false hasContentIssue false

Associations of polygenic scores and developmental trajectories of externalizing behaviors

Published online by Cambridge University Press:  31 January 2025

A. Brooke Sasia
Affiliation:
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA Waisman Center, University of Wisconsin-Madison, Madison, WI, USA Center for Demography on Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
Katherine G. Jonas
Affiliation:
Department of Psychiatry and Behavioral Health, Stony Brook University School of Medicine, USA
Monika A. Waszczuk
Affiliation:
Department of Psychology, Rosalind Franklin University of Medicine and Science, USA
James J. Li*
Affiliation:
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA Waisman Center, University of Wisconsin-Madison, Madison, WI, USA Center for Demography on Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
*
Corresponding author: James J. Li; Email: [email protected]

Abstract

Polygenic scores (PGSs) have garnered increasing attention in the clinical sciences due to their robust prediction signals for psychopathology, including externalizing (EXT) behaviors. However, studies leveraging PGSs have rarely accounted for the phenotypic and developmental heterogeneity in EXT outcomes. We used the National Longitudinal Study of Adolescent to Adult Health (analytic N = 4,416), spanning ages 13 to 41, to examine associations between EXT PGSs and trajectories of antisocial behaviors (ASB) and substance use behaviors (SUB) identified via growth mixture modeling. Four trajectories of ASB were identified: High Decline (3.6% of the sample), Moderate (18.9%), Adolescence-Peaked (10.6%), and Low (67%), while three were identified for SUB: High Use (35.2%), Typical Use (41.7%), and Low Use (23%). EXT PGSs were consistently associated with persistent trajectories of ASB and SUB (High Decline and High Use, respectively), relative to comparison groups. EXT PGSs were also associated with the Low Use trajectory of SUB, relative to the comparison group. Results suggest PGSs may be sensitive to developmental typologies of EXT, where PGSs are more strongly predictive of chronicity in addition to (or possibly rather than) absolute severity.

Type
Regular Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1966). The classification of children’s psychiatric symptoms: A factor analytic study. Psychological Monographs: General and Applied, 80(7), 137.CrossRefGoogle ScholarPubMed
Achenbach, T. M., & Rescorla, L. A. (2003). Manual for the ASEBA adult forms and profiles. University of Vermont.Google Scholar
Adalbjarnardottir, S., & Rafnsson, F. D. (2002). Adolescent antisocial behavior and substance use: Longitudinal analyses. Addictive Behaviors, 27(2), 227240.CrossRefGoogle ScholarPubMed
Ahern, J., Thompson, W., Fan, C. C., & Loughnan, R. (2023). Comparing pruning and thresholding with continuous shrinkage polygenic score methods in a large sample of ancestrally diverse adolescents from the ABCD study. Behavior Genetics, 53(3), 292309. https://doi.org/10.1007/s10519-023-10139-wCrossRefGoogle Scholar
American Psychiatric Association. (2022). Diagnostic and Statistical Manual of Mental Disorders. (Fifth Edition, Text Revision). American Psychiatric Publishing.Google Scholar
Barboza, G. E. (2020). Child maltreatment, delinquent behavior, and school factors as predictors of depressive symptoms from adolescence to adulthood: A growth mixture model. Youth & Society, 52(1), 2754. https://doi.org/10.1177/0044118X17721803CrossRefGoogle Scholar
Barnes, J. C., Beaver, K. M., & Boutwell, B. B. (2011). Examining the genetic underpinnings to Moffitt’s developmental taxonomy: A behavioral genetic analysis. Criminology, 49(4), 923954. https://doi.org/10.1111/j.1745-9125.2011.00243.xCrossRefGoogle Scholar
Barr, P. B., & Dick, D. M. (2019). The genetics of externalizing problems. In Recent advances in research on impulsivity and impulsive behaviors. vol. 47. Springer, https://doi.org/10.1007/7854_2019_120CrossRefGoogle Scholar
Barr, P. B., Salvatore, J. E., Wetherill, L., Anokhin, A., Chan, G., Edenberg, H. J., Kuperman, S., Meyers, J., Nurnberger, J., Porjesz, B., Schuckit, M., & Dick, D. M. (2020). A family-based genome wide association study of externalizing behaviors. Behavior Genetics, 50(3), 175183. https://doi.org/10.1007/s10519-020-09999-3CrossRefGoogle ScholarPubMed
Bartels, M., Hendriks, A., Mauri, M., Krapohl, E., Whipp, A., Bolhuis, K., Conde, L. C., Luningham, J., Fung Ip, H., Hagenbeek, F., Roetman, P., Gatej, R., Lamers, A., Nivard, M., van Dongen, J., Lu, Y., Middeldorp, C., van Beijsterveldt, T., Vermeiren, R.Boomsma, D. I. (2018). Childhood aggression and the co-occurrence of behavioural and emotional problems: results across ages 3–16 years from multiple raters in six cohorts in the EU-ACTION project. European Child & Adolescent Psychiatry, 27(9), 11051121. https://doi.org/10.1007/s00787-018-1169-1 CrossRefGoogle ScholarPubMed
Belsky, J., & Van Ijzendoorn, M. H. (2015). What works for whom? Genetic moderation of intervention efficacy. Development and Psychopathology, 27(1), 16. https://doi.org/10.1017/S0954579414001254CrossRefGoogle ScholarPubMed
Bogdan, R., Baranger, D. A. A., & Agrawal, A. (2018). Polygenic risk scores in clinical psychology: Bridging genomic risk to individual differences. Annual Review of Clinical Psychology, 14(1), 119157. https://doi.org/10.1146/annurev-clinpsy-050817-084847CrossRefGoogle ScholarPubMed
Bosk, E. A., Anthony, W. L., Folk, J. B., & Williams-Butler, A. (2021). All in the family: Parental substance misuse, harsh parenting, and youth substance misuse among juvenile justice-involved youth. Addictive Behaviors, 119, 106888. https://doi.org/10.1016/j.addbeh.2021.106888 CrossRefGoogle ScholarPubMed
Bradshaw, C. P., Schaeffer, C. M., Petras, H., & Ialongo, N. (2010). Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: Gender differences in maladaptation across life domains. Journal of Youth and Adolescence, 39(8), 953966. https://doi.org/10.1007/s10964-009-9442-8CrossRefGoogle ScholarPubMed
Burt, S. A. (2022). The genetic, environmental, and cultural forces influencing youth antisocial behavior are tightly intertwined. Annual Review of Clinical Psychology, 18(1), 155178. https://doi.org/10.1146/annurev-clinpsy-072220-015507CrossRefGoogle ScholarPubMed
Burt, S. A., Clark, D. A., Gershoff, E. T., Klump, K. L., & Hyde, L. W. (2021). Twin differences in harsh parenting predict youth’s antisocial behavior. Psychological Science, 32(3), 395409. https://doi.org/10.1177/0956797620968532CrossRefGoogle ScholarPubMed
Chen, F. R., & Jaffee, S. R. (2015). The heterogeneity in the development of homotypic and heterotypic antisocial behavior. Journal of Developmental and Life-Course Criminology, 1(3), 269288. https://doi.org/10.1007/s40865-015-0012-3CrossRefGoogle Scholar
Chen, P., & Jacobson, K. C. (2012). Developmental trajectories of substance use from early adolescence to young adulthood: Gender and racial/ethnic differences. Journal of Adolescent Health, 50(2), 154163. https://doi.org/10.1016/j.jadohealth.2011.05.013CrossRefGoogle Scholar
Compton, W. M., Thomas, Y. F., Stinson, F. S., & Grant, B. F. (2007). Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States. Archives of General Psychiatry. 64.Google ScholarPubMed
Domingue, B., Trejo, S., Armstrong-Carter, E., & Tucker-Drob, E. (2020). Interactions between polygenic scores and environments: Methodological and conceptual challenges. Sociological Science, 7, 365386. https://doi.org/10.15195/v7.a19CrossRefGoogle ScholarPubMed
Duncan, S. C., Duncan, T. E., Strycker, L. A., & Chaumeton, N. R. (2007). A cohort-sequential latent growth model of physical activity from ages 12 to 17 years. Annals of Behavioral Medicine, 33(1), 8089. https://doi.org/10.1207/s15324796abm3301_9CrossRefGoogle ScholarPubMed
Elam, K. K., Ha, T., Neale, Z., Aliev, F., Dick, D., & Lemery-Chalfant, K. (2021). Age varying polygenic effects on alcohol use in African Americans and european Americans from adolescence to adulthood. Scientific Reports, 11(1), 22425. https://doi.org/10.1038/s41598-021-01923-xCrossRefGoogle ScholarPubMed
Fairchild, G. (2018). Adult outcomes of conduct problems in childhood or adolescence: Further evidence of the societal burden of conduct problems. European Child & Adolescent Psychiatry, 27(10), 12351237. https://doi.org/10.1007/s00787-018-1221-1CrossRefGoogle ScholarPubMed
Figge, C. J., Martinez-Torteya, C., & Weeks, J. E. (2018). Social-ecological predictors of externalizing behavior trajectories in at-risk youth. Development and Psychopathology, 30(1), 255266. https://doi.org/10.1017/S0954579417000608CrossRefGoogle ScholarPubMed
Flórez-Salamanca, L., Secades-Villa, R., Budney, A. J., García-Rodríguez, O., Wang, S., & Blanco, C. (2013). Probability and predictors of cannabis use disorders relapse: Results of the national epidemiologic survey on alcohol and related conditions (NESARC). Drug and Alcohol Dependence, 132(1-2), 127133. https://doi.org/10.1016/j.drugalcdep.2013.01.013CrossRefGoogle ScholarPubMed
Foster, E. M., Jones, D. E., & The Conduct Problems Prevention Research Group (2005). The high costs of aggression: Public expenditures resulting from conduct disorder. American Journal of Public Health, 95(10), 17671772. https://doi.org/10.2105/AJPH.2004.061424CrossRefGoogle ScholarPubMed
Frick, P. J. (2012). Developmental pathways to conduct disorder: Implications for future directions in research, assessment, and treatment. Journal of Clinical Child & Adolescent Psychology, 41(3), 378389.CrossRefGoogle ScholarPubMed
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A., & Smoller, J. W. (2019). Polygenic prediction via bayesian regression and continuous shrinkage priors. Nature Communications, 10(1), 1776. https://doi.org/10.1038/s41467-019-09718-5CrossRefGoogle ScholarPubMed
Goldstein, R. B., Chou, S. P., Saha, T. D., Smith, S. M., Jung, J., Zhang, H., Pickering, R. P., Ruan, W. J., Huang, B., & Grant, B. F. (2017). The epidemiology of antisocial behavioral syndromes in adulthood: Results from the national epidemiologic survey on alcohol and related conditions-III. The Journal of Clinical Psychiatry, 78(1), 9098. https://doi.org/10.4088/JCP.15m10358CrossRefGoogle ScholarPubMed
Gottfredson, M. R., & Hirschi, T. (2016). The criminal career perspective as an explanation of crime and a guide to crime control policy: The view from general theories of crime. Journal of Research in Crime and Delinquency, 53(3), 406419. https://doi.org/10.1177/0022427815624041CrossRefGoogle Scholar
Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D., Ip, H. F., Marioni, R. E., McIntosh, A. M., Deary, I. J., Koellinger, P. D., Harden, K. P., Nivard, M. G., & Tucker-Drob, E. M. (2019). Genomic SEM provides insights into the multivariate genetic architecture of complex traits. Nature Human Behaviour, 3(5), 513525. https://doi.org/10.1038/s41562-019-0566-xCrossRefGoogle ScholarPubMed
Gustavson, D. E., Franz, C. E., Panizzon, M. S., Lyons, M. J., & Kremen, W. S. (2020). Internalizing and externalizing psychopathology in middle age: Genetic and environmental architecture and stability of symptoms over 15 to 20 years. Psychological Medicine, 50(9), 15301538. https://doi.org/10.1017/S0033291719001533CrossRefGoogle ScholarPubMed
Halladay, J., Woock, R., El-Khechen, H., Munn, C., MacKillop, J., Amlung, M., Ogrodnik, M., Favotto, L., Aryal, K., Noori, A., Kiflen, M., & Georgiades, K. (2020). Patterns of substance use among adolescents: A systematic review. Drug and Alcohol Dependence, 216, 108222. https://doi.org/10.1016/j.drugalcdep.2020.108222CrossRefGoogle ScholarPubMed
Han, C., McGue, M. K., & Iacono, W. G. (1999). Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: Univariate and multivariate behavioral genetic analyses. Addiction, 94(7), 981993. https://doi.org/10.1046/j.1360-0443.1999.9479814.xCrossRefGoogle ScholarPubMed
Harris, K., Halpern, C., Whitsel, E., Hussey, J., Tabor, J., Entzel, P., & Undry, J.(2009). The national longitudinal study of adolescent health: research design. Add Health. Available from: https://addhealth.cpc.unc.edu/documentation/study-design/Google Scholar
Harris, K. M. (2022). New findings from wave V. Add Health Users Conference.Google Scholar
Harris, K. M., Halpern, C. T., Biemer, P., Liao, D., & Dean, S. C. (2019a). Add health wave V documentation: Sampling and mixed-mode survey design. Add Health. Available from: http://www.cpc.unc.edu/projects/addhealth/documentation/guides/ Google Scholar
Harris, K. M., Halpern, C. T., Whitsel, E. A., Hussey, J. M., Killeya-Jones, L. A., Tabor, J., & Dean, S. C. (2019b). Cohort profile: The national longitudinal study of adolescent to adult health (Add health). International Journal of Epidemiology, 48(5), 14151415k. https://doi.org/10.1093/ije/dyz115CrossRefGoogle ScholarPubMed
Henneberger, A. K., Mushonga, D. R., & Preston, A. M. (2021). Peer influence and adolescent substance use: A systematic review of dynamic social network research. Adolescent Research Review, 6(1), 5773. https://doi.org/10.1007/s40894-019-00130-0CrossRefGoogle Scholar
Hicks, B. M., Blonigen, D. M., Kramer, M. D., Krueger, R. F., Patrick, C. J., Iacono, W. G., & McGue, M. (2007). Gender differences and developmental change in externalizing disorders from late adolescence to early adulthood: A longitudinal twin study. Journal of Abnormal Psychology, 116(3), 433447. https://doi.org/10.1037/0021-843X.116.3.433CrossRefGoogle ScholarPubMed
Hicks, B. M., Krueger, R. F., Iacono, W. G., McGue, M., & Patrick, C. J. (2004). Family transmission and heritability of externalizing disorders: A twin-family study. Archives of General Psychiatry, 61(9), 7.CrossRefGoogle ScholarPubMed
Hicks, B. M., South, S. C., DiRago, A. C., Iacono, W. G., & McGue, M. (2009). Environmental adversity and increasing genetic risk for externalizing disorders. Archives of General Psychiatry, 66(6), 640. https://doi.org/10.1001/archgenpsychiatry.2008.554CrossRefGoogle ScholarPubMed
Hirschi, T., & Gottfredson, M. (1983). Age and the explanation of crime. American Journal of Sociology, 89(3), 552584.CrossRefGoogle Scholar
Ingoldsby, E. M., Shaw, D. S., Winslow, E., Schonberg, M., Gilliom, M., & Criss, M. M. (2006). Neighborhood disadvantage, parent-child conflict, neighborhood peer relationships, and early antisocial behavior problem trajectories. Journal of Abnormal Child Psychology, 34(3), 293309. https://doi.org/10.1007/s10802-006-9026-yCrossRefGoogle ScholarPubMed
Jackson, K. M., Sher, K. J., & Schulenberg, J. E. (2008). Conjoint developmental trajectories of young adult substance use. Alcoholism: Clinical and Experimental Research, 32(5), 723737. https://doi.org/10.1111/j.1530-0277.2008.00643.xCrossRefGoogle ScholarPubMed
Jaffee, S. R., Moffitt, T. E., Caspi, A., Taylor, A., & Arseneault, L. (2002). Influence of adult domestic violence on children’s internalizing and externalizing problems: An environmentally informative twin study. Journal of the American Academy of Child & Adolescent Psychiatry, 41(9), 10951103. https://doi.org/10.1097/00004583-200209000-00010CrossRefGoogle ScholarPubMed
Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling: Latent trajectory classes. Social and Personality Psychology Compass, 2(1), 302317. https://doi.org/10.1111/j.1751-9004.2007.00054.xCrossRefGoogle Scholar
Kachuri, L., Chatterjee, N., Hirbo, J., Schaid, D. J., Martin, I., Kullo, I. J., Kenny, E. E., Pasaniuc, B., Auer, P. L., Conomos, M. P., Conti, D. V., Ding, Y., Wang, Y., Zhang, H., Zhang, Y., Witte, J. S., & Ge, T. (2024). Polygenic risk methods in diverse populations (PRIMED) consortium methods working group, principles and methods for transferring polygenic risk scores across global populations. Nature Reviews Genetics, 25(1), 825. https://doi.org/10.1038/s41576-023-00637-2CrossRefGoogle Scholar
Kandaswamy, R., Allegrini, A., Plomin, R., & Stumm, S. V. (2021). Predictive validity of genome-wide polygenic scores for alcohol use from adolescence to young adulthood. Drug and Alcohol Dependence, 219, 108480. https://doi.org/10.1016/j.drugalcdep.2020.108480CrossRefGoogle ScholarPubMed
Karlsson Linnér, R., Mallard, T. T., Barr, P. B., Sanchez-Roige, S., Madole, J. W., Driver, M. N., Poore, H. E., de Vlaming, R., Grotzinger, A. D., Tielbeek, J. J., Johnson, E. C., Liu, M., Rosenthal, S. B., Ideker, T., Zhou, H., Kember, R. L., Pasman, J. A., Verweij, K. J. H., Liu, D. J.Dick, D. M. (2021). Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nature Neuroscience, 24(10), 13671376. https://doi.org/10.1038/s41593-021-00908-3CrossRefGoogle ScholarPubMed
Kendler, K. S., & Eaves, L. J. (1986). Models for the joint effects of genotype and environmenton liability to psychiatric illness. American Journal of Psychiatry, 143(3), 279289.Google Scholar
Kendler, K. S., Jaffee, S. R., & Romer, D. Eds (2011). The dynamic genome and mental health: The role of genes and environments in youth development. Oxford University Press.Google Scholar
Kendler, K. S., Schmitt, E., Aggen, S. H., & Prescott, C. A. (2008). Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood. Archives of General Psychiatry, 65(6), 674. https://doi.org/10.1001/archpsyc.65.6.674CrossRefGoogle ScholarPubMed
Keyes, K. M., Martins, S. S., Blanco, C., & Hasin, D. S. (2010). Telescoping and gender differences in alcohol dependence: New evidence from two national surveys. American Journal of Psychiatry, 167(8), 969976. https://doi.org/10.1176/appi.ajp.2009.09081161CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I., & Moffitt, T. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11(10), 903913.CrossRefGoogle ScholarPubMed
Klahr, A. M., McGue, M., Iacono, W. G., & Burt, S. A. (2011). The association between parent-child conflict and adolescent conduct problems over time: Results from a longitudinal adoption study. Journal of Abnormal Psychology, 120(1), 4656. https://doi.org/10.1037/a0021350CrossRefGoogle ScholarPubMed
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., Clark, L. A., Eaton, N. R., Forbes, M. K., Forbush, K. T., Goldberg, D., Hasin, D., Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K.Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454477. https://doi.org/10.1037/abn0000258CrossRefGoogle ScholarPubMed
Kotov, R., Krueger, R. F., Watson, D., Cicero, D. C., Conway, C. C., DeYoung, C. G., Eaton, N. R., Forbes, M. K., Hallquist, M. N., Latzman, R. D., Mullins-Sweatt, S. N., Ruggero, C. J., Simms, L. J., Waldman, I. D., Waszczuk, M. A., & Wright, A. G. C. (2021). The hierarchical taxonomy of psychopathology (HiTOP): A quantitative nosology based on consensus of evidence. Annual Review of Clinical Psychology, 17(1), 1921–1926. https://doi.org/10.1146/annurev-clinpsy-081219-093304 CrossRefGoogle ScholarPubMed
Krueger, R. F., Hobbs, K. A., Conway, C. C., Dick, D. M., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Keyes, K. M., Latzman, R. D., Michelini, G., Patrick, C. J., Sellbom, M., Slade, T., South, S. C., Sunderland, M., Tackett, J., Waldman, I., Waszczuk, M. A.et al. (2021). Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): II. externalizing superspectrum. World Psychiatry, 20(2), 171193. https://doi.org/10.1002/wps.20844CrossRefGoogle ScholarPubMed
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. D. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116(4), 645666. https://doi.org/10.1037/0021-843X.116.4.645CrossRefGoogle ScholarPubMed
Lahey, B. B., Rathouz, P. J., Van Hulle, C., Urbano, R. C., Krueger, R. F., Applegate, B., Garriock, H. A., Chapman, D. A., & Waldman, I. D. (2008). Testing structural models of DSM-IV symptoms of common forms of child and adolescent psychopathology. Journal of Abnormal Child Psychology, 36(2), 187206. https://doi.org/10.1007/s10802-007-9169-5CrossRefGoogle ScholarPubMed
Levy, S., Campbell, M. D., Shea, C. L., & DuPont, R. (2018). Trends in abstaining from substance use in adolescents: 1975-2014. Pediatrics, 142(2), e20173498. https://doi.org/10.1542/peds.2017-3498CrossRefGoogle ScholarPubMed
Li, J. J. (2017). Assessing the interplay between multigenic and environmental influences on adolescent to adult pathways of antisocial behaviors. Development and Psychopathology, 29(5), 19471967. https://doi.org/10.1017/S0954579417001511CrossRefGoogle ScholarPubMed
Li, J. J. (2019). Assessing phenotypic and polygenic models of ADHD to identify mechanisms of risk for longitudinal trajectories of externalizing behaviors. Journal of Child Psychology and Psychiatry, 60(11), 11911199. https://doi.org/10.1111/jcpp.13071CrossRefGoogle ScholarPubMed
Li, J. J., Cho, S. B., Salvatore, J. E., Edenberg, H. J., Agrawal, A., Chorlian, D. B., Porjesz, B., Hesselbrock, V., Investigators, C. O. G. A., & Dick, D. M. (2017). The impact of peer substance use and polygenic risk on trajectories of heavy episodic drinking across adolescence and emerging adulthood. Alcoholism: Clinical and Experimental Research, 41(1), 6575. https://doi.org/10.1111/acer.13282 CrossRefGoogle ScholarPubMed
Li, J. J., Hilton, E. C., Lu, Q., Hong, J., Greenberg, J. S., & Mailick, M. R. (2019). Validating psychosocial pathways of risk between neuroticism and late life depression using a polygenic score approach. Journal of Abnormal Psychology, 128(3), 200211. https://doi.org/10.1037/abn0000419CrossRefGoogle ScholarPubMed
Li, J. J., Zhang, Q., Wang, Z., & Lu, Q. (2022). Research domain criteria (RDoC) mechanisms of transdiagnostic polygenic risk for trajectories of depression: From early adolescence to adulthood. Journal of Psychopathology and Clinical Science, 131(6), 567574. https://doi.org/10.1037/abn0000659CrossRefGoogle ScholarPubMed
Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.Google Scholar
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4), 584591. https://doi.org/10.1038/s41588-019-0379-xCrossRefGoogle ScholarPubMed
McHugh, R. K., Votaw, V. R., Sugarman, D. E., & Greenfield, S. F. (2018). Sex and gender differences in substance use disorders. Clinical Psychology Review, 66, 1223. https://doi.org/10.1016/j.cpr.2017.10.012CrossRefGoogle ScholarPubMed
Miech, R. A., Johnston, L. D., Patrick, M. E., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2023). Monitoring the Future national survey results on drug use, 1975-2022: Secondary school students. Monitoring the Future Monograph Series, Institute for Social Research, The University of Michigan. https://monitoringthefuture.org/results/publications/monographs/Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100(4), 674701. https://doi.org/10.1037/0033-295X.100.4.674CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14(1), 179207. https://doi.org/10.1017/S0954579402001104CrossRefGoogle ScholarPubMed
Morrison, R. A., Martinez, J. I., Hilton, E. C., & Li, J. J. (2019). The influence of parents and schools on developmental trajectories of antisocial behaviors in caucasian and African American youths. Development and Psychopathology, 31(04), 15751587. https://doi.org/10.1017/S0954579418001335CrossRefGoogle ScholarPubMed
Mullins-Sweatt, S. N., Bornovalova, M. A., Carragher, N., Clark, L. A., Corona Espinosa, A., Jonas, K., Keyes, K. M., Lynam, D. R., Michelini, G., Miller, J. D., Min, J., Rodriguez-Seijas, C., Samuel, D. B., Tackett, J. L., & Watts, A. L. (2022). HiTOP assessment of externalizing antagonism and disinhibition. Assessment, 29(1), 3445. https://doi.org/10.1177/10731911211033900CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (2015). Mplus user’s guide (7th edn). Muthén, L. K., & Muthén, B. O..Google Scholar
Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling in clinical research. Annual Review of Clinical Psychology, 6(1), 109138. https://doi.org/10.1146/annurev.clinpsy.121208.131413CrossRefGoogle ScholarPubMed
National Institute on Drug Abuse (2014). Principles of adolescent substance use disorder treatment: a research-based guide. National Institute on Drug Abuse Archives. Available from: https://archives.nida.nih.gov/sites/default/files/podat-guide-adolescents-508.pdf Google Scholar
Nelson, S. E., Van Ryzin, M. J., & Dishion, T. J. (2015). Alcohol, marijuana, and tobacco use trajectories from age 12 to 24 years: Demographic correlates and young adult substance use problems. Development and Psychopathology, 27(1), 253277. https://doi.org/10.1017/S0954579414000650CrossRefGoogle Scholar
Nikstat, A., & Riemann, R. (2020). On the etiology of internalizing and externalizing problem behavior: A twin-family study. PLOS ONE, 15(3), e0230626. https://doi.org/10.1371/journal.pone.0230626CrossRefGoogle ScholarPubMed
Nivard, M. G., Lubke, G. H., Dolan, C. V., Evans, D. M., St. Pourcain, B., Munafò, M. R., & Middeldorp, C. M. (2017). Joint developmental trajectories of internalizing and externalizing disorders between childhood and adolescence. Development and Psychopathology, 29(3), 919928. https://doi.org/10.1017/S0954579416000572CrossRefGoogle ScholarPubMed
Noble, E. P. (1998). The D2 dopamine receptor gene: A review of association studies in alcoholism and phenotypes. Alcohol, 16(1), 3345.CrossRefGoogle ScholarPubMed
Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., Poulton, R., Sears, M. R., Thomson, W. M., & Caspi, A. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20(2), 673716. https://doi.org/10.1017/S0954579408000333CrossRefGoogle ScholarPubMed
Olson, S. L., Sameroff, A. J., Lansford, J. E., Sexton, H., Davis-Kean, P., Bates, J. E., Pettit, G. S., & Dodge, K. A. (2013). Deconstructing the externalizing spectrum: Growth patterns of overt aggression, covert aggression, oppositional behavior, impulsivity/inattention, and emotion dysregulation between school entry and early adolescence. Development and Psychopathology, 25(3), 817842. https://doi.org/10.1017/S0954579413000199CrossRefGoogle ScholarPubMed
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., Nolte, I. M., Tiesler, C. M. T., Bakermans-Kranenburg, M. J., Davies, G. E., Evans, D. M., Geoffroy, M.-C., Grallert, H., Groen-Blokhuis, M. M., Hudziak, J. J., Kemp, J. P., Keltikangas-Järvinen, L., McMahon, G., Mileva-Seitz, V. R.Tiemeier, H. (2016). A genome-wide approach to children’s aggressive behavior: the EAGLE consortium . American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 562572. https://doi.org/10.1002/ajmg.b.32333CrossRefGoogle ScholarPubMed
Patrick, M. E., Wightman, P., Schoeni, R. F., & Schulenberg, J. E. (2012). Socioeconomic status and substance use among young adults: A comparison across constructs and drugs. Journal of Studies on Alcohol and Drugs, 73(5), 772782. https://doi.org/10.15288/jsad.2012.73.772CrossRefGoogle ScholarPubMed
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702709. https://doi.org/10.1038/ng.3285CrossRefGoogle ScholarPubMed
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904909. https://doi.org/10.1038/ng1847CrossRefGoogle ScholarPubMed
Rhee, S. H., & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128(3), 490529. https://doi.org/10.1037/0033-2909.128.3.490CrossRefGoogle ScholarPubMed
Rivenbark, J. G., Odgers, C. L., Caspi, A., Harrington, H., Hogan, S., Houts, R. M., Poulton, R., & Moffitt, T. E. (2018). The high societal costs of childhood conduct problems: Evidence from administrative records up to age 38 in a longitudinal birth cohort. Journal of Child Psychology and Psychiatry, 59(6), 703710. https://doi.org/10.1111/jcpp.12850CrossRefGoogle Scholar
Roy, A. (2008). The relationships between attention-deficit/hyperactive disorder (ADHD), conduct disorder (CD) and problematic drug use (PDU). Drugs: Education, Prevention and Policy, 15(1), 5575. https://doi.org/10.1080/09687630701489481Google Scholar
Salvatore, J. E., Aliev, F., Bucholz, K., Agrawal, A., Hesselbrock, V., Hesselbrock, M., Bauer, L., Kuperman, S., Schuckit, M. A., Kramer, J. R., Edenberg, H. J., Foroud, T. M., & Dick, D. M. (2015). Polygenic risk for externalizing disorders: Gene-by-development and gene-by-environment effects in adolescents and young adults. Clinical Psychological Science, 3(2), 189201. https://doi.org/10.1177/2167702614534211CrossRefGoogle ScholarPubMed
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 13591366. https://doi.org/10.1177/0956797611417632CrossRefGoogle ScholarPubMed
Substance Abuse and Mental Health Services Administration. (2021), Key substance use and mental health indicators in the United States: Results from the 2020 National Survey on Drug Use and Health, Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration.Google Scholar
Sweeten, G., Piquero, A. R., & Steinberg, L. (2013). Age and the explanation of crime, revisited. Journal of Youth and Adolescence, 42(6), 921938. https://doi.org/10.1007/s10964-013-9926-4CrossRefGoogle ScholarPubMed
Teeuw, J., Klein, M., Mota, N. R., Brouwer, R. M., van ‘t Ent, D., Al-Hassaan, Z. Franke, B., Boomsma, D. I., & Hulshoff Pol, H. E. (2022). Multivariate genetic structure of externalizing behavior and structural brain development in a longitudinal adolescent twin sample. International Journal of Molecular Sciences, 23(6), 3176. https://doi.org/10.3390/ijms23063176CrossRefGoogle Scholar
Thapar, A., Harrington, R., & McGuffin, P. (2001). Examining the comorbidity of ADHD-related behaviours and conduct problems using a twin study design. British Journal of Psychiatry, 179(3), 224229. https://doi.org/10.1192/bjp.179.3.224CrossRefGoogle ScholarPubMed
Thibodeau, E. L., Cicchetti, D., & Rogosch, F. A. (2015). Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Development and Psychopathology, 27(4pt2), 16211636. https://doi.org/10.1017/S095457941500098XCrossRefGoogle ScholarPubMed
Thomas, N. S., Gillespie, N. A., Chan, G., Edenberg, H. J., Kamarajan, C., Kuo, S. I.-C., Miller, A. P., Nurnberger, J. I., Tischfield, J., Dick, D. M., & Salvatore, J. E. (2024). A developmentally-informative genome-wide association study of alcohol use frequency. Behavior Genetics, 54(2), 151168. https://doi.org/10.1007/s10519-023-10170-xCrossRefGoogle ScholarPubMed
Tielbeek, J. J., Uffelmann, E., Williams, B. S., Colodro-Conde, L., Gagnon, É., Mallard, T. T., Levitt, B. E., Jansen, P. R., Johansson, A., Sallis, H. M., Pistis, G., Saunders, G. R. B., Allegrini, A. G., Rimfeld, K., Konte, B., Klein, M., Hartmann, A. M., Salvatore, J. E., Nolte, I. M.Posthuma, D. (2022). Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis. Molecular Psychiatry, 27(11), 44534463. https://doi.org/10.1038/s41380-022-01793-3CrossRefGoogle ScholarPubMed
Vachon, D. D., Krueger, R. F., Irons, D. E., Iacono, W. G., & McGue, M. (2017). Are alcohol trajectories a useful way of identifying at-risk youth? A multiwave longitudinal-epidemiologic study. Journal of the American Academy of Child & Adolescent Psychiatry, 56(6), 498505. https://doi.org/10.1016/j.jaac.2017.03.016CrossRefGoogle ScholarPubMed
Vergunst, F., Chadi, N., Orri, M., Brousseau-Paradis, C., Castellanos-Ryan, N., Séguin, J. R., Vitaro, F., Nagin, D., Tremblay, R. E., & Côté, S. M. (2021). Trajectories of adolescent poly-substance use and their long-term social and economic outcomes for males from low-income backgrounds. European Child & Adolescent Psychiatry, 31(11), 17291738. https://doi.org/10.1007/s00787-021-01810-wCrossRefGoogle ScholarPubMed
Viding, E., Jones, A. P., Paul, J. F., Moffitt, T. E., & Plomin, R. (2008). Heritability of antisocial behaviour at 9: Do callous-unemotional traits matter? Developmental Science, 11(1), 1722. https://doi.org/10.1111/j.1467-7687.2007.00648.xCrossRefGoogle ScholarPubMed
Virtanen, S., Kaprio, J., Viken, R., Rose, R. J., & Latvala, A. (2019). Birth cohort effects on the quantity and heritability of alcohol consumption in adulthood: A finnish longitudinal twin study. Addiction, 114(5), 836846. https://doi.org/10.1111/add.14533CrossRefGoogle ScholarPubMed
Walters, G. D. (2002). The heritability of alcohol abuse and dependence: A meta-analysis of behavior genetic research. The American Journal of Drug and Alcohol Abuse, 28(3), 557584. https://doi.org/10.1081/ADA-120006742CrossRefGoogle ScholarPubMed
Wang, S. S., Walsh, K., & Li, J. J. (2023). A prospective longitudinal study of multidomain resilience among youths with and without maltreatment histories. Development and Psychopathology, 36(2), 115. https://doi.org/10.1017/S0954579423000032Google ScholarPubMed
Waszczuk, M. A., Eaton, N. R., Krueger, R. F., Shackman, A. J., Waldman, I. D., Zald, D. H., Lahey, B. B., Patrick, C. J., Conway, C. C., Ormel, J., Hyman, S. E., Fried, E. I., Forbes, M. K., Docherty, A. R., Althoff, R. R., Bach, B., Chmielewski, M., DeYoung, C. G., Forbush, K. T.,…Kotov, R. (2020). Redefining phenotypes to advance psychiatric genetics: Implications from hierarchical taxonomy of psychopathology. Journal of Abnormal Psychology, 129(2), 143161. https://doi.org/10.1037/abn0000486CrossRefGoogle ScholarPubMed
Waszczuk, M. A., Zavos, H. M. S, & Eley, T. C. (2021). Why do depression, conduct, and hyperactivity symptoms co-occur across adolescence? The role of stable and dynamic genetic and environmental influences. European Child and Adolescent Psychiatry, 30, 10131035 https://doi-org/10.1007/s00787-020-01515-6.CrossRefGoogle ScholarPubMed
Wertz, J., Caspi, A., Belsky, D. W., Beckley, A. L., Arseneault, L., Barnes, J. C., Corcoran, D. L., Hogan, S., Houts, R. M., Morgan, N., Odgers, C. L., Prinz, J. A., Sugden, K., Williams, B. S., Poulton, R., & Moffitt, T. E. (2018). Genetics and crime: Integrating new genomic discoveries into psychological research about antisocial behavior. Psychological Science, 29(5), 791803. https://doi.org/10.1177/0956797617744542CrossRefGoogle ScholarPubMed
White, H. R., Labouvie, E. W., & Papadaratsakis, V. (2005). Changes in substance use during the transition to adulthood: A comparison of college students and their noncollege age peers. Journal of Drug Issues, 35(2), 281306. https://doi.org/10.1177/002204260503500204CrossRefGoogle Scholar
Wichers, M., Gardner, C., Maes, H. H., Lichtenstein, P., Larsson, H., & Kendler, K. S. (2013). Genetic innovation and stability in externalizing problem behavior across development: A multi-informant twin study. Behavior Genetics, 43(3), 191201. https://doi.org/10.1007/s10519-013-9586-xCrossRefGoogle ScholarPubMed
Williams, C. M., Poore, H., Tanksley, P. T., Kweon, H., Courchesne-Krak, N. S., Londono-Correa, D., Mallard, T. T., Barr, P., Koellinger, P. D., Waldman, I. D., Sanchez-Roige, S., Harden, K. P., Palmer, A. A., Dick, D. M., & Karlsson Linnér, R. (2023). Guidelines for evaluating the comparability of down-sampled GWAS summary statistics. Behavior Genetics, 53(5-6), 404415. https://doi.org/10.1007/s10519-023-10152-zCrossRefGoogle ScholarPubMed
Windle, M. (1990). A longitudinal study of antisocial behaviors in early adolescence as predictors of late adolescent substance use: Gender and ethnic group differences. Journal of Abnormal Psychology, 99(1), 8691.CrossRefGoogle ScholarPubMed
Wolke, D., Waylen, A., Samara, M., Steer, C., Goodman, R., Ford, T., & Lamberts, K. (2009). Selective drop-out in longitudinal studies and non-biased prediction of behaviour disorders. British Journal of Psychiatry, 195(3), 249256. https://doi.org/10.1192/bjp.bp.108.053751CrossRefGoogle ScholarPubMed
Ystrom, E., Kendler, K. S., & Reichborn-Kjennerud, T. (2014). Early age of alcohol initiation is not the cause of alcohol use disorders in adulthood, but is a major indicator of genetic risk. A population-based twin study. Addiction, 109(11), 18241832. https://doi.org/10.1111/add.12620CrossRefGoogle ScholarPubMed
Zellers, S. M., Iacono, W. G., McGue, M., & Vrieze, S. (2022). Developmental and etiological patterns of substance use from adolescence to middle age: A longitudinal twin study. Drug and Alcohol Dependence, 233, 109378. https://doi.org/10.1016/j.drugalcdep.2022.109378CrossRefGoogle ScholarPubMed
Zheng, Y., Brendgen, M., Dionne, G., Boivin, M., & Vitaro, F. (2019). Genetic and environmental influences on developmental trajectories of adolescent alcohol use. European Child & Adolescent Psychiatry, 28(9), 12031212. https://doi.org/10.1007/s00787-019-01284-x CrossRefGoogle ScholarPubMed
Zheng, Y., & Cleveland, H. H. (2015). Differential genetic and environmental influences on developmental trajectories of antisocial behavior from adolescence to young adulthood. Journal of Adolescence, 45(1), 204213. https://doi.org/10.1016/j.adolescence.2015.10.006 CrossRefGoogle ScholarPubMed
Supplementary material: File

Sasia et al. supplementary material 1

Sasia et al. supplementary material
Download Sasia et al. supplementary material 1(File)
File 77.4 KB
Supplementary material: File

Sasia et al. supplementary material 2

Sasia et al. supplementary material
Download Sasia et al. supplementary material 2(File)
File 77.4 KB