Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T09:49:05.811Z Has data issue: false hasContentIssue false

On the smooth transfer for Guo–Jacquet relative trace formulae

Published online by Cambridge University Press:  01 June 2015

Chong Zhang*
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Beijing100875, PR China email [email protected]

Abstract

We establish the existence of smooth transfer for Guo–Jacquet relative trace formulae in the $p$-adic case. This kind of smooth transfer is a key step towards a generalization of Waldspurger’s result on central values of L-functions of $\text{GL}_{2}$.

Type
Research Article
Copyright
© The Author 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizenbud, A. and Gourevitch, D., Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem, Duke Math. J. 149 (2009), 509567; with an appendix by the authors and Eitan Sayag.CrossRefGoogle Scholar
Arthur, J. and Clozel, L., Simple algebras, base change, and advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120 (Princeton University Press, 1989).CrossRefGoogle Scholar
Feigon, B., Martin, K. and Whitehouse, D., Periods and nonvanishing of central L-values for $\text{GL}(2n)$, Preprint (2013), arXiv:1308.2253 [math.NT].Google Scholar
Friedberg, S. and Jacquet, H., Linear periods, J. Reine Angew. Math. 443 (1993), 91139.Google Scholar
Furusawa, M. and Martin, K., Local root numbers, Bessel models, and a conjecture of Guo and Jacquet, J. Number Theory 146 (2015), 150170.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1109.Google Scholar
Guo, J., On a generalization of a result of Waldspurger, Canad. J. Math. 48 (1996), 105142.CrossRefGoogle Scholar
Guo, J., Uniqueness of generalized Waldspurger model for GL(2n), Pacific J. Math. 180 (1997), 273289.CrossRefGoogle Scholar
Harish-Chandra, Harmonic analysis on reductive p-adic groups, Lecture Notes in Mathematics, vol. 162(Springer, 1970).Google Scholar
Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, University Lecture Series, vol. 16(American Mathematical Society, 1999).Google Scholar
Harris, R. N., A refined Gross–Prasad conjecture for unitary groups, PhD thesis, University of California, San Diego (ProQuest LLC, Ann Arbor, MI, 2011).Google Scholar
Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.CrossRefGoogle Scholar
Jacquet, H., Sur un résultat de Waldspurger, Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 185229.CrossRefGoogle Scholar
Jacquet, H., Smooth transfer of Kloosterman integrals, Duke Math. J. 120 (2003), 121152.CrossRefGoogle Scholar
Jacquet, H. and Rallis, S., Uniqueness of linear periods, Compositio Math. 102 (1996), 65123.Google Scholar
Kottwitz, R., Harmonic analysis on reductive p-adic grups and Lie algebras, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Mathematics Proceedings, vol. 4 (American Mathematical Society, Providence, RI, 2005), 393522.Google Scholar
Rader, C. and Rallis, S., Spherical characters on p-adic symmetric spaces, Amer. J. Math. 118 (1996), 91178.CrossRefGoogle Scholar
Sakellaridis, Y. and Venkatesh, A., Periods of harmonic analysis on spherical varieties, Preprint (2012), arXiv:1203.0039 [math.RT].Google Scholar
Waldspurger, J.-L., Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173242.Google Scholar
Waldspurger, J.-L., Une formule des traces locale pour les algèbres de Lie p-adiques, J. Reine Angew. Math. 465 (1995), 4199.Google Scholar
Waldspurger, J.-L., Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), 153236.CrossRefGoogle Scholar
Zhang, W., Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups, Ann. of Math. (2) 180 (2014), 9711049.CrossRefGoogle Scholar
Zhang, W., Automorphic period and the central value of Rankin–Selberg L-function, J. Amer. Math. Soc. 27 (2014), 541612.CrossRefGoogle Scholar
Zhang, C., On linear periods, Math. Z. 279 (2015), 6184.CrossRefGoogle Scholar