Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T05:07:53.220Z Has data issue: false hasContentIssue false

Le lemme fondamental pondéré. I. Constructions géométriques

Published online by Cambridge University Press:  19 May 2010

Pierre-Henri Chaudouard
Affiliation:
CNRS et Université Paris-Sud, UMR 8628, Mathématique, Bâtiment 425, F-91405 Orsay Cedex, France (email: [email protected])
Gérard Laumon
Affiliation:
CNRS et Université Paris-Sud, UMR 8628, Mathématique, Bâtiment 425, F-91405 Orsay Cedex, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work is the geometric part of our proof of the weighted fundamental lemma, which is an extension of Ngô Bao Châu’s proof of the Langlands–Shelstad fundamental lemma. Ngô’s approach is based on a study of the elliptic part of the Hichin fibration. The total space of this fibration is the algebraic stack of Hitchin bundles and its base space is the affine space of ‘characteristic polynomials’. Over the elliptic set, the Hitchin fibration is proper and the number of points of its fibers over a finite field can be expressed in terms of orbital integrals. In this paper, we study the Hitchin fibration over an open set larger than the elliptic set, namely the ‘generically regular semi-simple set’. The fibers are in general neither of finite type nor separated. By analogy with Arthur’s truncation, we introduce the substack of ξ-stable Hitchin bundles. We show that it is a Deligne–Mumford stack, smooth over the base field and proper over the base space of ‘characteristic polynomials’. Moreover, the number of points of the ξ-stable fibers over a finite field can be expressed as a sum of weighted orbital integrals, which appear in the Arthur–Selberg traceformula.

Résumé

Ce travail est la partie géométrique de notre démonstration du lemme fondamental pondéré qui prolonge celle du lemme fondamental de Langlands–Shelstad due à Ngô Bao Châu. L’approche de Ngô repose sur l’étude de partie elliptique de la fibration de Hitchin. Cette fibration a pour espace total le champ des fibrés de Hitchin et pour base l’espace affine des «polynômes caractéristiques». Au-dessus de l’ouvert elliptique, elle est propre et le nombre de points de ses fibres sur un corps fini s’exprime en termes d’intégrales orbitales. Dans cet article, on étudie la fibration de Hitchin au-dessus d’un ouvert plus gros que l’ouvert elliptique, le lieu «génériquement semi-simple régulier». Les fibres ne sont en général ni de type fini ni même séparées. Par analogie avec les troncatures d’Arthur, nous introduisons le champ des fibrés de Hitchin ξ-stables. Nous montrons que celui-ci est un champ de Deligne–Mumford, lisse sur le corps de base et propre au-dessus de la base des polynômes caractéristiques. Nous exprimons le nombre de points d’une fibre ξ-stable sur un corps fini en termes d’intégrales orbitales pondérées d’Arthur qui apparaissent dans la formule des traces d’Arthur–Selberg.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

Références

[1]Arthur, J., The characters of discrete series as orbital integrals, Invent. Math. 32 (1976), 205261.CrossRefGoogle Scholar
[2]Arthur, J., A trace formula for reductive groups. I. Terms associated to classes in G(Q), Duke Math. J. 45 (1978), 911952.CrossRefGoogle Scholar
[3]Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 174.CrossRefGoogle Scholar
[4]Arthur, J., A local trace formula, Publ. Math. Inst. Hautes Études Sci. 73 (1991), 596.CrossRefGoogle Scholar
[5]Beauville, A. and Laszlo, Y., Un lemme de descente, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 335340.Google Scholar
[6]Beauville, A., Narasimhan, M. and Ramanan, S., Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169179.Google Scholar
[7]Behrend, K., The Lefschetz trace formula for the moduli space of principal bundles, PhD thesis, http://www.math.ubc.ca/∼behrend/thesis.ps.Google Scholar
[8]Behrend, K., Semi-stability of reductive group schemes over curves, Math. Ann. 301 (1995), 281305.CrossRefGoogle Scholar
[9]Biswas, I. and Ramanan, S., An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2) 49 (1994), 219231.CrossRefGoogle Scholar
[10]Boden, H. and Yokogawa, K., Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I, Internat. J. Math. 7 (1996), 573598.CrossRefGoogle Scholar
[11]Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968).Google Scholar
[12]Chaudouard, P.-H., La formule des traces pour les algèbres de Lie, Math. Ann. 322 (2002), 347382.CrossRefGoogle Scholar
[13]Chaudouard, P.-H. and Laumon, G., Sur l’homologie des fibres de Springer affines tronquées, Duke Math. J. 145 (2008), 443535.CrossRefGoogle Scholar
[14]Colliot-Thélène, J.-L. and Sansuc, J.-J., Cohomologie des groupes de type multiplicatif sur les schémas réguliers, C. R. Acad. Sci. Paris Sér. A–B 287 (1978), A449A452.Google Scholar
[15]Colliot-Thélène, J.-L. and Sansuc, J.-J., Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105134.CrossRefGoogle Scholar
[16]Dolgachev, I. and Hu, Y., Variation of geometric invariant theory quotients, Publ. Math. Inst. Hautes Études Sci. 87 (1998), 556 (with an appendix by Nicolas Ressayre).CrossRefGoogle Scholar
[17]Drinfel’d, V. G. and Simpson, C., B-structures on G-bundles and local triviality, Math. Res. Lett. 2 (1995), 823829.CrossRefGoogle Scholar
[18]Esteves, E., Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), 30453095 (electronic).CrossRefGoogle Scholar
[19]Faltings, G., Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507568.Google Scholar
[20]Goresky, M., Kottwitz, R. and Macpherson, R., Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), 509561.CrossRefGoogle Scholar
[21]Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167.Google Scholar
[22]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361.Google Scholar
[23]Harder, G., Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 3354.CrossRefGoogle Scholar
[24]Harder, G., Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249306.CrossRefGoogle Scholar
[25]Heinloth, J., Semistable reduction for G-bundles on curves, J. Algebraic Geom. 17 (2008), 167183.CrossRefGoogle Scholar
[26]Heinloth, J. and Schmitt, A., The cohomology ring of moduli stacks of principal bundles over curves, Preprint.Google Scholar
[27]Kazhdan, D. and Lusztig, G., Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), 129168.CrossRefGoogle Scholar
[28]Kostant, B., Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327404.CrossRefGoogle Scholar
[29]Kottwitz, R., Transfer factors for Lie algebras, Represent. Theory 3 (1999), 127138 (electronic).CrossRefGoogle Scholar
[30]Langton, S., Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2) 101 (1975), 88110.CrossRefGoogle Scholar
[31]Ngô, B. C., Le lemme fondamental pour les algèbres de Lie, Preprint (2008),http://arxiv.org/abs/0801.0446.Google Scholar
[32]Ngô, B. C., Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), 399453.CrossRefGoogle Scholar
[33]Nitsure, N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), 275300.CrossRefGoogle Scholar
[34]Serre, J.-P., Cohomologie galoisienne, Lecture Notes in Mathematics, vol. 5, fifth edition (Springer, Berlin, 1994).CrossRefGoogle Scholar
[35]Springer, T., Reductive groups, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 327.Google Scholar
[36]Thaddeus, M., Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691723.CrossRefGoogle Scholar