Article contents
Endoscopy and cohomology growth on $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}U(3)$
Published online by Cambridge University Press: 24 April 2014
Abstract
We apply the endoscopic classification of automorphic forms on $U(3)$ to study the growth of the first Betti number of congruence covers of a Picard modular surface. As a consequence, we establish a case of a conjecture of Sarnak and Xue on cohomology growth.
- Type
- Research Article
- Information
- Copyright
- © The Author 2014
References
- 5
- Cited by