No CrossRef data available.
Article contents
Crofton formulas in pseudo-Riemannian space forms
Published online by Cambridge University Press: 28 October 2022
Abstract
Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz–Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature.
- Type
- Research Article
- Information
- Copyright
- © 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence