Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-31T23:26:36.547Z Has data issue: false hasContentIssue false

Brauer–Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms

Published online by Cambridge University Press:  01 March 2009

Jean-Louis Colliot-Thélène
Affiliation:
CNRS, UMR 8628, Mathématiques, Bâtiment 425, Université Paris-Sud, F-91405 Orsay, France (email: [email protected])
Fei Xu
Affiliation:
Academy of Mathematics and System Science, CAS, Beijing 100080, P.R. China (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More generally, such failure of a local-global principle may occur for the representation of one integral quadratic form by another integral quadratic form. We show that many such examples may be accounted for by a Brauer–Manin obstruction for the existence of integral points on schemes defined over the integers. For several types of homogeneous spaces of linear algebraic groups, this obstruction is shown to be the only obstruction to the existence of integral points.

Résumé

Une forme quadratique entière peut être représentée par une autre forme quadratique entière sur tous les anneaux d’entiers p-adiques et sur les réels, sans l’être sur les entiers. On en trouve de nombreux exemples dans la littérature. Nous montrons qu’une partie de ces exemples s’explique au moyen d’une obstruction de type Brauer–Manin pour les points entiers. Pour plusieurs types d’espaces homogènes de groupes algébriques linéaires, cette obstruction est la seule obstruction à l’existence d’un point entier.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Borovoi, M., The Brauer–Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. 473 (1996), 181194.Google Scholar
[2]Borovoi, M., The defect of weak approximation for homogeneous spaces, Ann. Fac. Sci. Toulouse 8 (1999), 219233.CrossRefGoogle Scholar
[3]Borovoi, M., On representations of integers by indefinite ternary quadratic forms, J. Number Theory 90 (2001), 281293.CrossRefGoogle Scholar
[4]Borovoi, M. and Rudnick, Z., Hardy–Littlewood varieties and semisimple groups, Invent. Math. 119 (1995), 3766.CrossRefGoogle Scholar
[5]Cassels, J. W. S., Rational quadratic forms, London Mathematical Society Monographs, vol. 13 (Academic Press, London, 1978).Google Scholar
[6]Chan, W. K. and Xu, F., On representations of spinor genera, Compositio Math. 140 (2004), 287300.CrossRefGoogle Scholar
[7]Colliot-Thélène, J.-L., Résolutions flasques des groupes linéaires connexes, J. reine angew. Math. 618 (2008), 77133.Google Scholar
[8]Colliot-Thélène, J.-L., Coray, D. and Sansuc, J.-J., Descente et principe de Hasse pour certaines variétés rationnelles, J. reine angew. Math. 320 (1980), 150191.Google Scholar
[9]Colliot-Thélène, J.-L. and Sansuc, J.-J., La descente sur les variétés rationnelles II, Duke Math. J. 54 (1987), 375492.CrossRefGoogle Scholar
[10]Colliot-Thélène, J.-L., Points rationnels sur les fibrations, in Higher dimensional varieties and rational points, Budapest, 2001, Bolyai Society of Mathematical Studies, vol. 12 (Springer, Berlin, 2003), 171221.CrossRefGoogle Scholar
[11]Colliot-Thélène, J.-L. and Kunyavskiĭ, B. È., Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes, J. Algebraic Geometry 15 (2006), 733752.CrossRefGoogle Scholar
[12]Eichler, M., Die Ähnlichkeitsklassen indefiniter Gitter, Math. Z. 55 (1952), 216252.CrossRefGoogle Scholar
[13]Erovenko, I. V. and Rapinchuk, A. S., Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields, J. Number Theory 119 (2006), 2848.CrossRefGoogle Scholar
[14]Estes, D. R. and Hsia, J. S., Sum of three integer squares in complex quadratic fields, Proc. Amer. Math. Soc. 89 (1983), 211214.CrossRefGoogle Scholar
[15]Gamst, J. and Hoechsmann, K., Products in sheaf cohomology, Tôhoku Math. J. 22 (1970), 143162.CrossRefGoogle Scholar
[16]Gamst, J. and Hoechsmann, K., Ext-products and edge-morphisms, Tôhoku Math. J. 23 (1971), 581588.CrossRefGoogle Scholar
[17]Grothendieck, A., Le groupe de Brauer, I, II, III, in Dix exposés sur la cohomologie des schémas (Masson, Paris; North-Holland, Amsterdam, 1968).Google Scholar
[18]Harari, D., Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), 221260.CrossRefGoogle Scholar
[19]Harder, G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967), 165191.CrossRefGoogle Scholar
[20]Hsia, J. S., Shao, Y. Y. and Xu, F., Representations of indefinite quadratic forms, J. reine angew. Math. 494 (1998), 129140.CrossRefGoogle Scholar
[21]Ji, C., Wang, Y. and Xu, F., Sums of three squares over imaginary quadratic fields, Forum Math. 18 (2006), 585601.CrossRefGoogle Scholar
[22]Jones, B. W. and Watson, G. L., On indefinite ternary quadratic forms, Canad. J. Math. 8 (1956), 592608.CrossRefGoogle Scholar
[23]Kneser, M., Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen, Arch. Math. VII (1956), 323332.CrossRefGoogle Scholar
[24]Kneser, M., Darstellungsmasse indefiniter quadratischer Formen, Math. Z. 77 (1961), 188194.CrossRefGoogle Scholar
[25]Kneser, M., Starke Approximation in algebraischen Gruppen, I, J. reine angew. Math. 218 (1965), 190203.CrossRefGoogle Scholar
[26]Kraft, H., Slodowy, P. and Springer, T. A., Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, vol. 13 (Birkhäuser, Basel, 1989).CrossRefGoogle Scholar
[27]Kottwitz, R. E., Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), 365399.CrossRefGoogle Scholar
[28]Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
[29]Milne, J. S., Arithmetic duality theorems, Perspectives in Mathematics, vol. 1 (Academic Press, New York, 1986).Google Scholar
[30]Nisnevich, Ye. A., Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris Sér. I 299 (1984), 58.Google Scholar
[31]O’Meara, O. T., Introduction to quadratic forms, Grundlehren der Mathematik, vol. 117 (Springer, Berlin, 1971).Google Scholar
[32]Platonov, V. P. and Rapinchuk, A. S., Algebraic groups and number theory (Nauka, Moscow, 1991), (Engl. trans. Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139 (Academic Press, Inc., Boston, MA, 1994)).Google Scholar
[33]Rajwade, A. R., Squares, London Mathematical Society Lecture Note Series, vol. 171 (Cambridge University Press, Cambridge, 1993).Google Scholar
[34]Sansuc, J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math. 327 (1981), 1280.Google Scholar
[35]Scharlau, W., Quadratic and Hermitian forms, Grundlehren der Mathematik, vol. 270 (Springer, Berlin, 1986).Google Scholar
[36]Schulze-Pillot, R., Darstellung durch Spinorgeschlechter ternärer quadratischer Formen, J. Number Theory 12 (1980), 529540.CrossRefGoogle Scholar
[37]Schulze-Pillot, R., Exceptional integers for genera of integral ternary positive definite quadratic forms, Duke Math. J. 102 (2000), 351357.CrossRefGoogle Scholar
[38]Schulze-Pillot, R., Representation by integral quadratic forms—a survey. Algebraic and arithmetic theory of quadratic forms, Contemp. Math. 344 (2004), 323337.CrossRefGoogle Scholar
[39]Schulze-Pillot, R. and Xu, F., Representations by spinor genera of ternary quadratic forms, Contemp. Math. 344 (2004), 323337.CrossRefGoogle Scholar
[40]Serre, J.-P., Cohomologie Galoisienne (Cinquième édition, révisée et complétée), Lecture Notes in Mathematics, vol. 5 (Springer, Berlin, 1965).CrossRefGoogle Scholar
[41]Skorobogatov, A. N., Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144 (Cambridge University Press, Cambridge, 2001).CrossRefGoogle Scholar
[42]Watson, G. L., Indefinite quadratic diophantine equations, Mathematika 8 (1961), 3238.CrossRefGoogle Scholar
[43]Watson, G. L., Diophantine equations reducible to quadratics, Proc. London Math. Soc. 17 (1967), 2644.CrossRefGoogle Scholar
[44]Weil, A., Sur la théorie des formes quadratiques, in Colloque sur la théorie des groupes algébriques (CBRM, Bruxelles, 1962), 922.Google Scholar
[45]Xu, F., Representations of indefinite ternary quadratic forms over number fields, Math. Z. 234 (2000), 115144.CrossRefGoogle Scholar
[46]Xu, F., On representations of spinor genera II, Math. Ann. 332 (2005), 3753.CrossRefGoogle Scholar