Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T23:01:03.795Z Has data issue: false hasContentIssue false

The asymptotic Fermat’s Last Theorem for five-sixths of real quadratic fields

Published online by Cambridge University Press:  06 March 2015

Nuno Freitas
Affiliation:
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany email [email protected]
Samir Siksek
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK email [email protected]

Abstract

Let $K$ be a totally real field. By the asymptotic Fermat’s Last Theorem over$K$ we mean the statement that there is a constant $B_{K}$ such that for any prime exponent $p>B_{K}$, the only solutions to the Fermat equation

$$\begin{eqnarray}a^{p}+b^{p}+c^{p}=0,\quad a,b,c\in K\end{eqnarray}$$
are the trivial ones satisfying $abc=0$. With the help of modularity, level lowering and image-of-inertia comparisons, we give an algorithmically testable criterion which, if satisfied by $K$, implies the asymptotic Fermat’s Last Theorem over $K$. Using techniques from analytic number theory, we show that our criterion is satisfied by $K=\mathbb{Q}(\sqrt{d})$ for a subset of $d\geqslant 2$ having density ${\textstyle \frac{5}{6}}$ among the squarefree positive integers. We can improve this density to $1$ if we assume a standard ‘Eichler–Shimura’ conjecture.

Type
Research Article
Copyright
© The Authors 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anni, S. and Siksek, S., On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields, Preprint (2014), arXiv:1408.1279.Google Scholar
Apostol, T. M., Introduction to analytic number theory (Springer, New York, 1976).Google Scholar
Bennett, M. A. and Skinner, C. M., Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), 2354.CrossRefGoogle Scholar
Bennett, M. A., Vatsal, V. and Yazdani, S., Ternary Diophantine equations of signature (p, p, 3), Compositio Math. 140 (2004), 13991416.CrossRefGoogle Scholar
Bilu, Yu., Hanrot, G. and Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75122.Google Scholar
Blasius, D., Elliptic curves, Hilbert modular forms, and the Hodge conjecture, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 83103.Google Scholar
Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
Cassels, J. W. S. and Frölich, A., Algebraic number theory (Academic Press, London, 1967).Google Scholar
Cohen, H., Number theory. Volume II: Analytic and modern tools, Graduate Texts in Mathematics, vol. 240 (Springer, New York, 2007).Google Scholar
Darmon, H., Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Darmon, H. and Merel, L., Winding quotients and some variants of fermats last theorem, J. Reine Angew. Math. 490 (1997), 81100.Google Scholar
David, A., Caractère d’isogénie et critères d’irréductibilité, Preprint (2011), arXiv:1103.3892.Google Scholar
Debarre, O. and Klassen, M. J., Points of low degree on smooth plane curves, J. Reine Angew. Math. 446 (1994), 8187.Google Scholar
Dembélé, L. and Voight, J., Explicit methods for Hilbert modular forms, in Elliptic curves, Hilbert modular forms and Galois deformations, ed. Berger, L. (Springer, Basel, 2013), 135198.CrossRefGoogle Scholar
Dickson, L. E., History of the theory of numbers, vol. II (Chelsea, New York, 1971).Google Scholar
Faddeev, D. K., The group of divisor classes on some algebraic curves, Dokl. Akad. Nauk SSSR 136 (1961), 296298 (in Russian); Engl. transl. Sov. Math. Dokl. 2 (1961), 67–69.Google Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349366.CrossRefGoogle Scholar
Freitas, N., Le Hung, B. V. and Siksek, S., Elliptic curves over real quadratic fields are modular, Invent. Math., to appear.Google Scholar
Freitas, N. and Siksek, S., Criteria for irreducibility of mod p representations of Frey curves, J. Théor. Nombres Bordeaux, to appear.Google Scholar
Fujiwara, K., Level optimisation in the totally real case, Preprint (2006), arXiv:math/0602586.Google Scholar
Gross, B. H. and Rohrlich, D. E., Some results on the Mordell–Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201224.CrossRefGoogle Scholar
Halberstadt, E. and Kraus, A., Courbes de Fermat: resultats et problemes, J. Reine Angew. Math. 548 (2002), 167234.Google Scholar
Hao, F. H. and Parry, C. J., The Fermat equation over quadratic fields, J. Number Theory 19 (1984), 115130.CrossRefGoogle Scholar
Hida, H., On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves, Amer. J. Math. 103 (1981), 726776.CrossRefGoogle Scholar
Jarvis, F., Level lowering for modular mod representations over totally real fields, Math. Ann. 313 (1999), 141160.CrossRefGoogle Scholar
Jarvis, F., Correspondences on Shimura curves and Mazur’s principle at p, Pacific J. Math. 213 (2004), 267280.CrossRefGoogle Scholar
Jarvis, F. and Meekin, P., The Fermat equation over ℚ(√2), J. Number Theory 109 (2004), 182196.CrossRefGoogle Scholar
Kolyvagin, V. A., On the first case of the Fermat theorem for cyclotomic fields, J. Math. Sci. (New York) 106 (2001), 33023311.CrossRefGoogle Scholar
Kraus, A., Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta Math. 69 (1990), 353385.CrossRefGoogle Scholar
Kraus, A., Majorations effectives pour l’équation de Fermat généralisée, Canad. J. Math. 49 (1997), 11391161.CrossRefGoogle Scholar
Kraus, A., Sur l’équation a 3 + b 3 = c p, Exp. Math. 7 (1998), 113.CrossRefGoogle Scholar
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen II (B. G. Teubner, Leipzig, 1909).Google Scholar
Mazur, B., Rational isogenies of prime degree, Invent. Math. 44 (1978), 129162.CrossRefGoogle Scholar
Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), 437449.CrossRefGoogle Scholar
Momose, F., Isogenies of prime degree over number fields, Compositio Math. 97 (1995), 329348.Google Scholar
Rajaei, A., On the levels of mod Hilbert modular forms, J. Reine Angew. Math. 537 (2001), 3365.Google Scholar
Ribet, K. A., On modular representations of Gal(∕ℚ) arising from modular forms, Invent. Math. 100 (1990), 431476.CrossRefGoogle Scholar
Ribet, K. A., On the equation a p + 2𝛼b p + c p = 0, Acta Arith. LXXIX.1 (1997), 716.CrossRefGoogle Scholar
Serre, J.-P., Sur les représentations modulaires de degré 2 de Gal(∕ℚ), Duke Math. J. 54 (1987), 179230.CrossRefGoogle Scholar
Siegel, C. L., Über einige Anwendungen diophantischer Approximationen, Abhandlungen der Preussischen Akademie der Wissenschaften (Walter de Gruyter, Berlin, 1929), 141.Google Scholar
Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106 (Springer, Dordrecht, 1986).CrossRefGoogle Scholar
Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151 (Springer, New York, 1994).CrossRefGoogle Scholar
Smart, N. P., S-unit equations, binary forms and curves of genus 2, Proc. Lond. Math. Soc. (3) 75 (1997), 271307.CrossRefGoogle Scholar
Smart, N. P., The algorithmic resolution of Diophantine equations, London Mathematical Society Student Texts, vol. 41 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Smart, N. P., Determining the small solutions to S-unit equations, Math. Comp. 68 (1999), 16871699.CrossRefGoogle Scholar
Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553572.CrossRefGoogle Scholar
Tzermias, P., Parametrization of low-degree points on a Fermat curve, Acta Arith. 108 (2003), 2535.CrossRefGoogle Scholar
Wiles, A., Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. (2) 141 (1995), 443551.CrossRefGoogle Scholar
Zhang, S.-W., Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27147.CrossRefGoogle Scholar