Article contents
The affine part of the Picard scheme
Part of:
Abelian varieties and schemes
Published online by Cambridge University Press: 01 March 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We describe the maximal torus and maximal unipotent subgroup of the Picard variety of a proper scheme over a perfect field.
MSC classification
Secondary:
14K30: Picard schemes, higher Jacobians
- Type
- Research Article
- Information
- Copyright
- Copyright © Foundation Compositio Mathematica 2009
References
[1]Bosch, S., Lütkebohmert, W. and Raynaud, M., Neron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21 (Springer, Berlin, 1990).Google Scholar
[2]Chevalley, C., Une démonstration d’un théorème sur les groupes algébriques, J. Math. Pures Appl. (9) 39 (1960), 307–317.Google Scholar
[3]Geisser, T., Arithmetic cohomology over finite fields and special values of ζ-functions, Duke Math. J. 133 (2006), 27–57.CrossRefGoogle Scholar
[4]Geisser, T., Duality via cycle complexes, Ann. of Math (2), to appear, arXiv:math.AG/0608456.Google Scholar
[5]Grothendieck, A., Technique de descente et théoremes d’existence en géometrie algébrique. VI. Les schémas de Picard: propriétés générales, in Seminaire Bourbaki, 1961/62, Exposé no. 236 (Société Mathématique de France, Paris, 1962).Google Scholar
[6]Milne, J.S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
[7]Murre, J.P., On contravariant functors from the category of pre-schemes over a field into the category of abelian groups (with an application to the Picard functor), Publ. Math. Inst. Hautes Études Sci. 23 (1964), 5–43.CrossRefGoogle Scholar
[9]Oort, F., Commutative group schemes, Lecture Notes in Mathematics, vol. 15 (Springer, Berlin, 1966).Google Scholar
[10]Raynaud, M., Spécialisation du foncteur de Picard, Publ. Math. Inst. Hautes Études Sci. 38 (1970), 27–76.CrossRefGoogle Scholar
[11]Roberts, L. and Singh, B., Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993), 249–279.Google Scholar
[12]Raynaud, M., Groups algébriques unipotents. Extensions entre groupes unipotents et groupes de type multiplicative, in Séminarie de Géometrie Algébrique du Bois Marie 1963/64 (SGA3), Lecture Notes in Mathematics, vol. 152 (Springer, Berlin, 1970).Google Scholar
[13]Traverso, C., Seminormality and Picard group, Ann. Sc. Norm. Super. Pisacl. Sci. (3) 24 (1970), 585–595.Google Scholar
[14]Weibel, C., Pic is a contracted functor, Invent. Math. 103 (1991), 351–377.CrossRefGoogle Scholar