Published online by Cambridge University Press: 07 November 2014
A special linear Grassmann variety $\text{SGr}(k,n)$ is the complement to the zero section of the determinant of the tautological vector bundle over $\text{Gr}(k,n)$. For an $SL$-oriented representable ring cohomology theory $A^{\ast }(-)$ with invertible stable Hopf map ${\it\eta}$, including Witt groups and $\text{MSL}_{{\it\eta}}^{\ast ,\ast }$, we have $A^{\ast }(\text{SGr}(2,2n+1))\cong A^{\ast }(pt)[e]/(e^{2n})$, and $A^{\ast }(\text{SGr}(k,n))$ is a truncated polynomial algebra over $A^{\ast }(pt)$ whenever $k(n-k)$ is even. A splitting principle for such theories is established. Using the computations for the special linear Grassmann varieties, we obtain a description of $A^{\ast }(\text{BSL}_{n})$ in terms of homogeneous power series in certain characteristic classes of tautological bundles.