Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:50:50.841Z Has data issue: false hasContentIssue false

Coherent presentations of Artin monoids

Published online by Cambridge University Press:  22 December 2014

Stéphane Gaussent
Affiliation:
Université de Lyon, Institut Camille Jordan, CNRS UMR 5208, France Université Jean Monnet, 42023 Saint-Étienne Cedex 2, France email [email protected]
Yves Guiraud
Affiliation:
INRIA, Laboratoire PPS, CNRS UMR 7126, France Université Paris 7, Case 7014, 75205 Paris Cedex 13, France email [email protected]
Philippe Malbos
Affiliation:
Université de Lyon, Institut Camille Jordan, CNRS UMR 5208, France Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France email [email protected]

Abstract

We compute coherent presentations of Artin monoids, that is, presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier’s and Knuth–Bendix’s completions into a homotopical completion–reduction, applied to Artin’s and Garside’s presentations. The main result of the paper states that the so-called Tits–Zamolodchikov 3-cells extend Artin’s presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.

Type
Research Article
Copyright
© The Authors 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baez, J., Higher-dimensional algebra II. 2-Hilbert spaces, Adv. Math. 127 (1997), 125189.CrossRefGoogle Scholar
Baez, J. and Crans, A., Higher-dimensional algebra VI. Lie 2-algebras, Theory Appl. Categ. 12 (2004), 492538.Google Scholar
Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337 (Hermann, Paris, 1968).Google Scholar
Brieskorn, E. and Saito, K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245271.CrossRefGoogle Scholar
Brown, K., The geometry of rewriting systems: a proof of the Anick–Groves–Squier theorem, in Algorithms and classification in combinatorial group theory, Berkeley, CA, 1989, Mathematical Sciences Research Institute Publications, vol. 23 (Springer, New York, 1992), 137163.CrossRefGoogle Scholar
Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal), PhD thesis, Mathematical Institute, University of Innsbruck (1965) (English translation, J. Symbolic Comput. 41 (2006), 475–511).CrossRefGoogle Scholar
Burroni, A., Higher-dimensional word problems with applications to equational logic, Theoret. Comput. Sci. 115 (1993), 4362.CrossRefGoogle Scholar
Dehornoy, P., Groupes de Garside, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 267306.CrossRefGoogle Scholar
Dehornoy, P., Digne, F., Godelle, E., Krammer, D. and Michel, J., Foundations of Garside theory, EMS Tracts in Mathematics (European Mathematical Society), to appear.Google Scholar
Dehornoy, P. and Lafont, Y., Homology of Gaussian groups, Ann. Inst. Fourier (Grenoble) 53 (2003), 489540.CrossRefGoogle Scholar
Dehornoy, P. and Paris, L., Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc. (3) 79 (1999), 569604.CrossRefGoogle Scholar
Deligne, P., Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273302.CrossRefGoogle Scholar
Deligne, P., Action du groupe des tresses sur une catégorie, Invent. Math. 128 (1997), 159175.CrossRefGoogle Scholar
Elgueta, J., Representation theory of 2-groups on Kapranov and Voevodsky’s 2-vector spaces, Adv. Math. 213 (2008), 5392.CrossRefGoogle Scholar
Elias, B. and Williamson, G., Soergel calculus, Preprint (2013), arXiv:1309.0865.Google Scholar
Ganter, N. and Kapranov, M., Representation and character theory in 2-categories, Adv. Math. 217 (2008), 22682300.CrossRefGoogle Scholar
Garside, F., The braid group and other groups, Q. J. Math. 20 (1969), 235254.CrossRefGoogle Scholar
Gebhardt, V. and González-Meneses, J., The cyclic sliding operation in Garside groups, Math. Z. 265 (2010), 85114.CrossRefGoogle Scholar
Geck, M., PyCox: computing with (finite) Coxeter groups and Iwahori–Hecke algebras, Preprint (2012), arXiv:1201.5566.Google Scholar
Geck, M. and Pfeiffer, G., Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs, vol. 21 (The Clarendon Press Oxford University Press, New York, 2000).CrossRefGoogle Scholar
Guiraud, Y. and Malbos, P., Higher-dimensional categories with finite derivation type, Theory Appl. Categ. 22 (2009), 420478.Google Scholar
Guiraud, Y. and Malbos, P., Higher-dimensional normalisation strategies for acyclicity, Adv. Math. 231 (2012), 22942351.CrossRefGoogle Scholar
Guiraud, Y. and Malbos, P., Polygraphs of finite derivation type, Preprint (2014), arXiv:1402.2587.Google Scholar
Guiraud, Y., Malbos, P. and Mimram, S., A homotopical completion procedure with applications to coherence of monoids, in 24th Int. Conf. Rewriting Techniques and Applications (RTA 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 21 (2013), 223238.Google Scholar
Kapranov, M. and Voevodsky, V., 2-categories and Zamolodchikov tetrahedra equations, in Algebraic groups and their generalizations: quantum and infinite-dimensional methods, University Park, PA, 1991, Proceedings of Symposia in Pure Mathematics, vol. 56 (American Mathematical Society, Providence, RI, 1994), 177259.CrossRefGoogle Scholar
Kapur, D. and Narendran, P., A finite Thue system with decidable word problem and without equivalent finite canonical system, Theoret. Comput. Sci. 35 (1985), 337344.CrossRefGoogle Scholar
Knuth, D. and Bendix, P., Simple word problems in universal algebras, in Computational Problems in Abstract Algebra, Oxford, 1967 (Pergamon, Oxford, 1970), 263297.Google Scholar
Lack, S., A Quillen model structure for 2-categories, K-Theory 26 (2002), 171205.CrossRefGoogle Scholar
Lack, S., A Quillen model structure for bicategories, K-Theory 33 (2004), 185197.CrossRefGoogle Scholar
Lack, S., Icons, Appl. Categ. Structures 18 (2010), 289307.CrossRefGoogle Scholar
Lyndon, R. and Schupp, P., Combinatorial group theory, Classics in Mathematics (Springer, Berlin, 2001) (reprint of the 1977 edition).CrossRefGoogle Scholar
Mac Lane, S., Categories for the working mathematician, second edition (Springer, 1998).Google Scholar
Manin, Y. and Schechtman, V., Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, in Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17 (Academic Press, Boston, MA, 1989), 289308.Google Scholar
Michel, J., A note on words in braid monoids, J. Algebra 215 (1999), 366377.CrossRefGoogle Scholar
Rouquier, R., 2-Kac–Moody algebras, Preprint (2008).Google Scholar
Street, R., Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8 (1976), 149181.CrossRefGoogle Scholar
Squier, C., Otto, F. and Kobayashi, Y., A finiteness condition for rewriting systems, Theoret. Comput. Sci. 131 (1994), 271294.CrossRefGoogle Scholar
Tietze, H., Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. Math. Phys. 19 (1908), 1118.CrossRefGoogle Scholar
Tits, J., A local approach to buildings, in The geometric vein (Springer, New York, 1981), 519547.CrossRefGoogle Scholar