Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T04:09:28.479Z Has data issue: false hasContentIssue false

X-Ray Powder Diffraction Identification of Illitic Materials

Published online by Cambridge University Press:  02 April 2024

Jan Śrondoń*
Affiliation:
Polish Academy of Sciences, Institute of Geological Sciences, 31-002 Krakow, Senacka 3, Poland
*
1Currently an exchange scientist at the U.S. Geological Survey, Federal Center, Denver, Colorado 80225.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 10-Å clay components of sedimentary rocks (“illites”) are commonly mixtures of 100% nonexpandable illite and an ordered illite/smectite mixed-layer mineral. If the proportion of the illite/ smectite in a mixture is sufficient to produce a measurable reflection between 33–35°2θ (CuKα radiation) that is noncoincident with an illite reflection, the ratio of component layers and type of interstratification for the mixed-layer mineral can be determined. The identification technique developed in this study rests upon the following experimental findings for ordered illite/smectites of diagenetic origin: (1) the thickness of the illite layer in illite/smectites is 9.97 Å; (2) the thickness of smectite-ethylene glycol complex ranges from 16.7 to 16.9 Å; (3) illite/smectites form a continuous sequence of interstratification types—random, random/IS, IS, IS/ISII, ISII—and each type is related to a specific range of expandability.

The new technique broadens the computer simulation method developed by R. C. Reynolds and J. Hower to include those sedimentary materials which are dominated by the presence of discrete illite, are low in illite/smectite, and, as such, have been described previously only by an “illite crystallinity index.”

Резюме

Резюме

10-Å глинистые компоненты осадочных пород (“иллиты”) обычно являются смесями 100% нерасширяемого иллита и упорядоченного минерала типа смешанно-слойного иллита/смектита (ИС). Отношение составляющих слоев и тип переслаивания для смешанно-слойного минерала могут быть определены, если пропорция иллита/смектита в смеси достаточна, чтобы вызвать измеряемое отра¬жение между 33–35°2θ (излучение СиКα), которое не совпадает с отражением иллита. Техника иден¬тификации, разработанная в этой статье, основывается на последовательных экспериментальных данных для упорядоченных иллитов/смектитов диагенетического происхождения: (1) толщина ил-литового слоя в иллите/смектите равна 9,97 Å; (2) толщина комплекса смектита с этиленовым гликолом изменяется в диапазоне от 16,7 до 16,9 Å; (3) иллиты/смектиты образовывают непрерывный ряд типов прослоев—беспорядочный, беспорядочный/ИС, ИС, ИС/ИСЦ, ИСП-и каждый тип связан со специфическим диапазоном расширяемости.

Эта новая техника расширяет метод компьютерного моделирования, развитый Рейнольдсом и Гоуером и включает такие осадочные материалы, в которых находится отдельный ил лит, которые имеют малые количества иллита/смектита и которые, как таковые, предварительно описывались только при помощи “индекса кристальности иллита.” [Е.G.]

Resümee

Resümee

Die 10-Å Tonkomponenten von sedimentären Gesteinen (“Illite”) sind gewöhnlich Mischlingen aus 100% nicht expandierbarem Illit und einem regelmäßigen Illit/Smektit-Wechsellagerungsmineral. Wenn das Verhältnis von Illit/Smektit in einer Mischung ausreicht, um einen meßbaren Reflex zwischen 33 und 35°2θ (CuKα-Strahlung) zu erzeugen, der nicht mit einem Illitreflex zusammenfällt, dann kann das Verhältnis der Komponentenschichten und die Art der Wechsellagerung für das Wechsellagerungsmineral bestimmt werden. Die Identifikationstechnik, die in dieser Untersuchung entwickelt wurde, beruht auf den folgenden experimentellen Ergebnissen für geordnete Illit/Smektit-Wechsellagerungen diagenetischen Ursprungs: (1) Die Dicke der Illitlagen in den Illit/Smektit-Wechsellagerungen beträgt 9,97 Å; (2) die Dicke des Smektit-Äthylenglykolkomplexes reicht von 16,7–16,9 Å; (3) Illit-Smektitwechsellagerungen bilden eine kontinuierliche Abfolge von Wechsellagerungstypen—unregelmäßige, unregelmäßige/IS, IS, IS/ISII, ISII—und jeder Typ gehört zu einem bestimmten Bereich von Expandierbarkeit.

Die neue Untersuchungsmethode baut die Computersimulationsmethode aus, die von R. C. Reynolds und J. Hower entwickelt wurde, um solche sedimentären Materialien mit einzuschließen, bei denen diskreter Illit vorherrscht, die wenig Illit/Smektit enthalten, und die, als solche, früher nur durch einen “Illit-Kristallinitätsindex” beschrieben wurden. [U.W.]

Résumé

Résumé

Les composés argile de 10 Å de roches sédimentaires (“illites”) sont communément des mélanges d'illite 100% non expansible et d'un minéral ordonné à couches mélangées illite/smectite. Si la proportion d'illite/smectite dans un melange est suffisante pour produire une reflection mesurable entre 33-35°2θ (radiation CuKα) qui ne coïncide pas avec une reflection illite, on peut déterminer la proportion de couches du composé et le genre d'interstratification du minéral à couches mélangées. La technique d'identification développée dans cette étude est basée sur les trouvailles expérimentales suivantes pour des illite/ smectites d'origine diagénétique: (1) l’épaisseur de la couche illite dans les illite/smectites est 9,97 Å: (2) l’épaisseur du complexe glycol smectite-éthylène s’étend de 16,7 à 16,9 Å; (3) les illite/smectites forment une séquence continuelle de types d'interstratification—au hasard, au hasard IS, IS, IS/ISII, ISII—et chaque type est apparenté à une étendue spécifique de pouvoir de dilatation.

La nouvelle technique élargit la méthode de simulation à l'ordinateur développée par R. C. Reynolds et J. Hower pour inclure les matériaux sédimentaires qui sont dominées par la présence d'illite discrète, ont un bas contenu en illite/smectite, et, en tant que tels, n'ont jusqu’à présent été décrits que par un “indexe de cristallinité d'illite.” [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Bailey, S. W., Brindley, G. W., Kodama, H. and Martin, R. T., 1982 Report of The Clay Minerals Society Nomenclature Committee for 1980–1981. Nomenclature for regular interstratifications Clays & Clay Minerals 30 7678.CrossRefGoogle Scholar
Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation Sediment. Petrology 49 5570.Google Scholar
Brindley, G. W. and Suzuki, T., 1983 Tarasovite, a mixed-layer illite-smectite which approaches an ordered 3:1 layer ratio Clay Miner. 18 8994.CrossRefGoogle Scholar
Drits, V. A. and Sakharov, B. A., 1976 X-ray Structural Analysis of Mixed-layer Minerals .Google Scholar
Gaudette, H. E., Eades, J. L., Grim, R. E. and Bradley, W. F., 1966 The nature of illite Clays and Clay Minerals, Proc. 12th Natl. Conf., Atlanta, Georgia, 1964 New York Pergamon Press 3348.Google Scholar
Gallego, J. R. and Perez, L. J. A., 1965 A regular mixed-layer mica-beidellite Clay Miner. 6 119122.CrossRefGoogle Scholar
Grim, R. E., Bray, R. H. and Bradley, W. F., 1937 The mica in argillaceous sediments Amer. Mineral. 22 813829.Google Scholar
Heller-Kallai, L. and Kaiman, Z. H., 1972 Some naturally occurring illite-smectite interstratifications Clays & Clay Minerals 20 165168.CrossRefGoogle Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. and Mowatt, T.C., 1966 The mineralogy of illites and mixed-layer illite-montmorillonites Amer. Mineral. 51 825854.Google Scholar
Kakinoki, J. and Komura, Y., 1965 Diffraction by a one-dimensionally disordered crystal: I. The intensity equation Acta Cryst. 19 137147.CrossRefGoogle Scholar
Kisch, H. J., Larsen, G. and Chilingar, G. V., 1983 Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks Amsterdam Elsevier 289493.Google Scholar
Kodama, H., 1966 The nature of the component layers of rectorite Amer. Mineral. 51 10351054.Google Scholar
Lazarenko, E. K., Korolev, and Yu, M., 1970 Tarasovite, a new dioctahedral ordered interlayered mineral Zapiski Vses. Obshch. 99 214224.Google Scholar
Nadeau, P. H. and Reynolds, R.C., 1981 Burial and contact metamorphism in the Mancos Shale Clays & Clay Minerals 29 249259.CrossRefGoogle Scholar
Perry, E. A. and Hower, J., 1970 Burial diagenesis of Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Pevear, D. R., Williams, V. E. and Mustoe, G. E., 1980 Kaolinite, smectite, and K-rectorite in bentonites: relation to coal rank at Tulameen, British Columbia Clays & Clay Minerals 28 241254.CrossRefGoogle Scholar
Reynolds, R. C., 1968 The effect of particle size on apparent lattice spacings Acta Cryst. 24 319320.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-Ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed-layer Ulite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Schultz, L. G., 1982 Mixed-layer illite/smectite and other minerals in shale, bentonite, and concretions in the Montana Disturbed Belt 82.Google Scholar
Shimoda, S., 1972 An interstratified mineral of mica and montmorillonite from the mineralized district at Niida near the Shakanai mine, Akita prefecture, Japan Clay Sci. 4 115125.Google Scholar
Srodon, J., Mortland, M. M. and Farmer, V. C., 1979 Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 251260.Google Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 28 401411.CrossRefGoogle Scholar
Srodon, J., 1981 X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite Clay Miner. 16 297304.CrossRefGoogle Scholar
Weaver, C. E., 1960 Possible uses of clay minerals in search for oil Amer. Assoc. Petrol. Geol. Bull. 44 15051518.Google Scholar