Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T20:04:49.830Z Has data issue: false hasContentIssue false

Study of Low-Pressure Argon Adsorption on Synthetic Nontronite: Implications for Smectite Crystal Growth

Published online by Cambridge University Press:  01 January 2024

Alain Decarreau
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA, 6 rue Michel Brunet, F-86022, Poitiers Cedex, France
Sabine Petit*
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA, 6 rue Michel Brunet, F-86022, Poitiers Cedex, France
Pauline Andrieux
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA, 6 rue Michel Brunet, F-86022, Poitiers Cedex, France
Frederic Villieras
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569, CNRS Université de Lorraine, BP 40, F-54501, Vandoeuvre-lès-Nancy, France
Manuel Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569, CNRS Université de Lorraine, BP 40, F-54501, Vandoeuvre-lès-Nancy, France
Angelina Razafitianamaharavo
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569, CNRS Université de Lorraine, BP 40, F-54501, Vandoeuvre-lès-Nancy, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because relatively little information about the crystal-growth process of smectite is available, the process was assessed here by studying the size and shape of nontronite particles synthesized at six different temperatures from 75 to 150°C over a period of 4 weeks.

The morphology of nontronites was studied using low-pressure isotherms of argon adsorption at 77 K, a method which enables the measurement of the basal and edge surface areas of the nontronite particles and of their mean diameter and thickness. During the crystal growth of nontronite, the mean particle length increased whereas their thickness (and the number of stacked layers) did not vary significantly.

A specific two-dimensional crystal-growth process was observed for smectite via the lateral extension of the layers. This process also appears to occur during the growth of neoformed natural smectite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Amelinckx, S., 1952 La croissance hélicoïdale de cristaux de biotite Comptes Rendus de l’Académie des Sciences, Paris 234 971973.Google Scholar
Andrieux, P. and Petit, S., 2010 Hydrothermal synthesis of dioctahedral smectites: The Al-Fe chemical series. Part I: Influence of experimental conditions Applied Clay Science 48 517.CrossRefGoogle Scholar
Arslan, M. Abdioglu, E. and Kadir, S., 2010 Mineralogy, geochemistry and origin of bentonite in upper cretaceous pyroclastic units of the Tirebolu area, Giresun, northeast Turkey Clays and Clay Minerals 58 120141.CrossRefGoogle Scholar
Bauer, A. Lanson, B. Ferrage, E. Emmerick, K. Taubald, H. Schield, D. and Velde, B., 2006 The fate of smectite in KOH solution American Mineralogist 91 13131322.CrossRefGoogle Scholar
Bardot, F. Villiéras, F. Michot, L.J. François, M. Gérard, G. and Cases, J.M., 1998 High resolution gas adsorption study on illites permuted with various cations: assessment of surface energetic properties Journal of Dispersion Science and Technology 19 739759.CrossRefGoogle Scholar
Baronnet, A., 1972 Growth mechanisms and polytypism in synthetic hydroxyl bearing phlogopite American Mineralogist 47 605616.Google Scholar
Bickmore, B.R. Bosbach, D. Hochella, M.F. Charlet, L. and Rufe, F., 2001 In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicates edge surface structures and dissolution mechanisms American Mineralogist 86 411423.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G. editors (1980) Crystal Structure of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Esquevin, J., 1956 Etude expérimentale du mécanisme de la formation des antigorites nickellifères Bulletin de la Socié té Française de Minéralogie Cristallographie 79 408421.CrossRefGoogle Scholar
Caillère, S. Henin, S. and Esquevin, J., 1957 Synthèse des minéraux argileux Bulletin du Groupe Français des Argiles 9 6776.CrossRefGoogle Scholar
Carrado, K. Decarreau, A. Petit, S. Bergaya, F. Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Synthetic clay minerals and purification of natural clays Handbook of Clay Science Amsterdam Elsevier 115139.CrossRefGoogle Scholar
Christidis, G.E., 2001 Formation and growth of smectites in bentonites: a case study from Kimols Island, Aegean, Greece Clays and Clay Minerals 49 204215.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398.CrossRefGoogle Scholar
Decarreau, A., 1980 Cristallogenèse expérimentale des smectites magnésiennes: hectorites, stévensites Bulletin de Minéralogie 103 579590.CrossRefGoogle Scholar
Decarreau, A., 1983 Etude expérimentale de la cristallogenèse des smectites. Mesure des coefficients de partage smectite trioctaèdrique — solution aqueuse pour les métaux M2+ de la première série de transition Sciences Géologiques, Mémoire 74 185 pp..Google Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions Clay Minerals 21 861877.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crysytallogenesis of ferric smectite by evolution of Si-Fe coprecipitation in oxidizing conditions Clay Minerals 22 207223.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Vieillard, P.h. and Dabert, N., 2004 Hydrothermal synthesis of aegirine at 200°C European Journal of Mineralogy 16 8590.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Martin, F. Farges, F. Vieillard, P.h. and Joussein, E., 2008 Hydrothermal synthesis, between 75 and 150°C, of high charge ferric nontronites Clays and Clay Minerals 56 322337.CrossRefGoogle Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., 1998 Deducing growth mechanism for minerals from the shapes of crystal size distributions American Journal of Science 298 499533.CrossRefGoogle Scholar
Güven, N., 1988 Smectites Hydrous Phyllosilicates (exclusive of Micas) 19 497559.Google Scholar
Hartman, P. and Hartman, P., 1973 Structure and morphology Crystal Growth: an Introduction Amsterdam North Holland Publications 367402.Google Scholar
Inoue, A. and Kitagawa, R., 1994 Morphological characteristics of illitic clay minerals from a hydrothermal system American Mineralogist 79 700711.Google Scholar
Jige, M. Kitagawa, R. Zaykov, V.V. and Sinyakovskaya, I., 2003 Surface microtopography of sudoite Clay Minerals 38 375382.CrossRefGoogle Scholar
Kitagawa, R., 1997 Surface microtopography of rectorite (allevardite) from Allevard, France Clay Minerals 29 709715.Google Scholar
Kitagawa, R., 1998 Surface microtopography of illite crystals from different modes of occurrence The Canadian Mineralogist 36 15591567.Google Scholar
Kitagawa, R. and Matsuda, T., 1992 Microtopography of regularly interstratified mica and smectite Clays and Clay Minerals 40 114121.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554.CrossRefGoogle Scholar
Kuwahara, Y., 2006 In-situ AFM study of smectite dissolution under alkaline conditions at room temperature American Mineralogist 91 11421149.CrossRefGoogle Scholar
Le Forestier, L. Muller, F. Villiéras, F. and Pelletier, M., 2010 Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue Applied Clay Sciences 48 1825.CrossRefGoogle Scholar
Manceau, A. Schlegel, M.L. Nagy, K.L. and Charlet, L., 1999 Evidence of the formation of trioctahedral clay upon sorption of Co2+ on quartz Journal of Colloid and Interface Science 220 181197.CrossRefGoogle ScholarPubMed
Meunier, A., 2006 Why are clay minerals small? Clay Minerals 41 551556.CrossRefGoogle Scholar
Meunier, A., Fiore, S. Cuadros, J. and Huertas, J., 2010 Formation mechanisms of mixed-layer clay minerals Interstratified Clay Minerals: Origin, Characterization and Geochemical Significance 5371.Google Scholar
Michot, L.J. and Villiéras, F., 2002 Assessment of surface energetic heterogeneity of synthetic Na-saponite The role of layer charge. Clay Minerals 37 3957.CrossRefGoogle Scholar
Michot, L.J. Villiéras, F., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Surface and porosity Handbook of Clay Science Amsterdam Elsevier 965978.CrossRefGoogle Scholar
Michot, L.J. François, M. and Cases, J.M., 1990 Surface heterogeneity studied by a quasi-equilibrium adsorption procedure Langmuir 6 637643.CrossRefGoogle Scholar
Moll, W.F. Jr., 2001 Baseline studies of The Clay Minerals Society Source Clays: geological origins Clays and Clay Minerals 49 374380.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Nakasawa, H. Yamada, H. and Fujita, T., 1992 Crystal synthesis of smectite applying very high pressure and temperature Applied Clay Science 6 395401.CrossRefGoogle Scholar
Peronnet, M. Villiéras, F. Jullien, M. Razafitianamaharavo, A. Raynal, J. and Bonnin, D., 2007 Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion Geochimica et Cosmochimica Acta 71 14631479.CrossRefGoogle Scholar
Petit, S. Martin, F. Wiewióra, A. De Perseval, P. and Decarreau, A., 2004 Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study American Mineralogist 89 319326.CrossRefGoogle Scholar
Petit, S. Righi, D. and Decarreau, A., 2008 Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hoffmann-Klemen effect Clays and Clay Minerals 56 645654.CrossRefGoogle Scholar
Rainer, D. Scheidegger, A.M. Manceau, A. Schlegel, M. Baeyens, B. Bradbury, M.H. and Morales, M., 2002 Neoformation of Ni phyllosilicates upon Ni uptake on montmorillonite: a kinetic study by powder and polarized extended X-ray absorption fine structure spectroscopy Geochimica et Cosmochimica Acta 66 23352347.Google Scholar
Rudzinski, W. Charmas, R. Piasecki, W. Prélot, B. Thomas, F. Villiéras, F. and Cases, J.M., 1999 Calorimetric effects of simple ion adsorption at silica/electrolyte interface: A quantitative analysis of surface energetic heterogeneity Langmuir 15 59775983.CrossRefGoogle Scholar
Sayed Hassan, M. Villiéras, F. Razafitianamaharavo, A. and Michot, L.J., 2005 Geometrical and energetic heterogeneity of kaolinites The role of exchangeable cations on argon adsorpt ion energy distribution. Langmuir 21 1228312289.Google Scholar
Sayed Hassan, M. Villiéras, F. Gaboriaud, F. and Razafitianamaharavo, A., 2006 AFM and low-pressure argon adsorption analysis of geometrical properties of phyllosilicates Journal of Colloid and Interface Science 296 614623.CrossRefGoogle ScholarPubMed
Schlegel, M.L. Manceau, A. Charlet, L. Chateigner, D. and Hazeman, J.L., 2001 Sorption of metal ions on clay minerals. Nucleation and epitaxial growth of Zn phyllosil icate on the edges of hectorite Geochimica et Cosmochimica Acta 65 41554170.CrossRefGoogle Scholar
Siffert, B., 1962 Quelques réactions de la silice en solution: la fomation des argiles Mémoires Service Carte Géologique Alsace Lorraine 253 142144.Google Scholar
Środoń, J. Eberl, D.D. and Drits, V.A., 2000 Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism Clays and Clay Minerals 48 446458.CrossRefGoogle Scholar
Sunagawa, I. and Koshino, Y., 1975 Growth spirals on kaolin group minerals American Mineralogist 60 407412.Google Scholar
Tournassat, C. Neaman, A. Villiéras, F. Bosbach, D. and Charlet, L., 2003 Nano morphology of montmorillonites particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations American Mineralogist 88 19891995.CrossRefGoogle Scholar
Villiéras, F. Cases, J.M. François, M. Michot, L.J. and Thomas, F., 1992 Texture and surface energetic heterogeneity of solids from modeling of low pressure gas adsorption isotherms Langmuir 8 17891795.CrossRefGoogle Scholar
Villiéras, F. Michot, L.J. Bardot, F. Cases, J.M. François, M. and Rudzinsky, W., 1997 An improved derivative isotherm summation method to study surface heterogeneity of clay minerals Langmuir 13 11041117.CrossRefGoogle Scholar
Villiéras, F. Michot, L.J. Cases, J.M. Berend, I. Bardot, F. François, M. Gérard, G. and Yvon, J., 1997 Static and dynamic studies of the energetic surface heterogeneity of clay minerals Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces 104 573623.CrossRefGoogle Scholar
Villiéras, F. Leboda, R. Charmas, B. Bardot, F. Gérard, G. and Rudzinski, W., 1998 High resolution Ar and N2 assessment of carbosils surface heterogeneity Carbon 36 15011510.CrossRefGoogle Scholar
Villiéras, F. Michot, L.J. Bardot, F. Chamerois, M. Eypert-Blaison, C. Gérard, G. and Cases, J.M., 2002 Surface heterogeneity of minerals Comptes Rendus Geoscience 334 597609.CrossRefGoogle Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar
Zhang, D. Zhou, C. Lin, C. Tong, D. and Yu, W., 2010 Synthesis of clay minerals Applied Clay Science 50 111.CrossRefGoogle Scholar