Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T19:54:03.074Z Has data issue: false hasContentIssue false

Static and Dynamic Structure of Water in Hydrated Kaolinites. I. The Static Structure

Published online by Cambridge University Press:  02 April 2024

P. M. Costanzo
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226
R. F. Giese Jr.
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226
M. Lipsicas
Affiliation:
Schlumberger-Doll Research, P.O. Box 307, Ridgefield, Connecticut 06877
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Four hydrates with d(001) = 8.4, 8.6, and 10 Å (two types) were synthesized by intercalating kaolinite with dimethylsulfoxide and treating the intercalated clay with fluoride ions. X-ray powder diffraction, infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and kinetics of dehydration experiments have led to the identification of two types of interlayer water. One type of water (hole water) is situated in the ditrigonal holes of the silica tetrahedral surface; the second type (associated water) forms a discontinuous layer of mobile water. The 8.4-Å and 8.6-Å hydrates have only hole water, whereas the two synthetic 10-Å hydrates and halloysite(10Å) contain both hole and associated water. The hole water is probably hydrogen bonded to the basal oxygens of the silica tetrahedra or, in the 8-Å hydrates when fluorine exchanges for inner-surface hydroxyls, the water molecules may reorient and form stronger hydrogen bonds to the fluorine. Associated water forms water-water hydrogen bonds approximately equal in strength to liquid water but is less strongly bonded to the clay surfaces than hole water. At room temperature the hole and associated water in the 10-Å hydrates do not form an ice-like structure.

Резюме

Резюме

Четыре гидрата с d(001) = 8,4, 8,6, и 10 Å (два типы) синтезировались путем прослаиваниа каолинита диметилсулфоокисью и обработкой прослойки фтористыми ионами. Два типа межслойной воды идентифицировались при помощи ренигеновской порошковой дифракции, инфракрасной спек¬троскопии, дифференциальной развертывающей калориметрии, термо-гравиметрического анализа и экспериментов по кинетике дегидратации. Один тип воды (пустотная вода) находится в дитригональ-ных местах кремниевой тетраэдрической поверхности; второй тип (ассоциированная вода) образо¬вывает неравномерный слой подвижной воды. 8,4 Å и 8,6 Å гидраты имеют только пустотную воду, тогда как два синтетических 10 Å гидрата и галлуазит (10 Å) содержат оба типа, пустотную и ассоциированную воду. Пустотная вода является, вероятно, связанной водородной связью с основ¬ными атомами кислорода тетраэдров окиси кремния или, молекулы воды могут изменять ориен¬тацию и образовывать более сильную водородную связь с фтором в 8 Å гидратах, если фтор обме¬нивает гидроксиловые группы внутренних поверхностей. Ассоциированная вода образовывает водородные связи вода-вода с прочностью приблизительно такой, как вода в жидком состоянии, но она легче связана с глинистой поверхностью, чем пустотная вода. В комнатной температуре ни пустотная ни ассоциированная вода не формируют структуры типа льда в 10 Å гидратах. [Е.О.]

Resümee

Resümee

Vier Hydrate mit d(001) = 8,4,8,6, und 10 Å (zwei Arten) wurden synthetisiert, indem Kaolinit mit Dimethylsulfoxid wechselgelagert und der wechselgelagerte Ton mit Fluoridionen behandelt wurde. Röntgenpulverdiffraktometrie, Infrarotspektroskopie, Differentialrasterkalorimetrie, und Thermogravi-metrie sowie die Kinetik von Dehydratationsexperimenten haben zur Bestimmung von zwei Arten von Zwischenschichtwasser geführt. Eine Art Wasser (sog. Hohlraumwasser) befindet sich in den ditrigonalen Hohlräumen der Siliziumtetraederoberfläche; die zweite Art (sog. assoziiertes Wasser) bildet eine diskontinuierliche Lage von mobilem Wasser. Die 8,4 Å- und 8,6 Å-Hydrate haben nur sog. Hohlraumwasser, während die zwei synthetischen 10 Å-Hydrate und Halloysit(10 Å) sowohl Hohlraumals auch assoziiertes Wasser enthalten. Das Hohlraumwasser ist wahrscheinlich durch Wasserstoffbrücken an die Basissauerstoffe der Si04-Tetraeder gebunden oder—in den 8 Å-Hydraten, wenn das Fluorid anstelle des Hydroxyls der inneren Oberfläche tritt—die Wassermoleküle können auch reorientiert sein und festere Wasserstoffbindungen zu den Fluoridionen bilden. Das assoziierte Wasser bildet Wasser-Wasser Wasserstoffbindungen, die etwa gleich fest sind wie im flüssigen Wasser, aber weniger fest an die Tonoberfläche gebunden sind als das Hohlraumwasser. Bei Raumtemperatur bilden das Hohlraum- und das assoziierte Wasser in den 10 Å-Hydraten keine Eis-ähnliche Struktur. [U.W.]

Résumé

Résumé

Quatre hydrates avec d(001) = 8,4,8,6, et 10 Å (deux types) ont été synthétisés en intercalant la kaolinite avec la diméthylsulfoxide et en traitant l'argile intercalé avec des ions fluorides. La diffraction des rayons-X, la spectroscopie infrarouge, la calorimetrie différentielle balayante, l'analyse gravimétrique thermale, et des expériences de kinétique de déshydration ont mené à l'identification de deux types d'eau intercouche. Un type d'eau (eau de trou) est situé dans les trous ditrigonaux de la surface tétraèdrale de la silice; le second type (eau associée) forme une couche discontinue d'eau mobile. Les hydrates de 8,4 Å et de 8,6 Å ont seulement de l'eau de trou, alors que les deux hydrates synthétiques de 10 Å et l'halloysite(lOÅ) contiennent à la fois l'eau de trou et associée. L'eau de trou est probablement liée par l'hydrogène aux oxygènes de base des tétraèdres de la silice ou, dans les hydrates de 8-Å lorsque la fluorine est échangée pour les hydroxyles de la surface intérieure, les molécules d'eau peuvent se réorienter et former des liens hydrogènes plus forts avec la fluorine. L'eau associée forme des liens hydrogènes eau-eau à peu près aussi forts que l'eau liquide, mais est moins fort liée aux surfaces argiles que l'eau de trou. A température ambiante, l'eau de trou et associée dans les hydrates de 10 À ne forme pas une structure semblable à de la glace. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Adams, J. M., 1978 Differential scanning calorimetrie study of kaolinite:N-methylformamide intercalate Clays & Clay Minerals 26 169172.CrossRefGoogle Scholar
Costanzo, P. M., Clemency, C. V., Giese, R. F. Jr., 1980 Low-temperature synthesis of a 10-Å hydrate of kaolinite using dimethylsulfoxide and ammonium fluoride Clays & Clay Minerals 28 155156.CrossRefGoogle Scholar
Costanzo, P. M., Giese, R. F. and Clemency, C. V., 1984 Synthesis of a 10-Å hydrated kaolinite Clays & Clay Minerals 32 2935.CrossRefGoogle Scholar
Costanzo, P. M., Giese, R. F., Lipsicas, M. and Straley, C., 1982 Synthesis of a quasi-stable kaolinite and heat capacity of interlayer water Nature 296 549551.CrossRefGoogle Scholar
Cruz, M. I., Letellier, M. and Fripiat, J. J., 1978 NMR study of adsorbed water. II. Molecular motions in the monolayer hydrate of halloysite J. Chem. Phys. 69 20182027.CrossRefGoogle Scholar
Cruz-Cumplido, M., Sow, C. and Fripiat, J. J., 1982 Hy-droxyl infrared spectrum, crystallinity and cohesion energy in kaolin Bull. Mineral. 105 493498.Google Scholar
Daniels, T., 1973 Thermal Analysis New York Wiley.Google Scholar
Eger, I., Cruz-Cumplido, M. I. and Fripiat, J. J., 1979 Quelques données sur la capacité calorifique et les propriétés de l’eau dans divers systèmes poreaux Clay Miner. 14 161172.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331364.CrossRefGoogle Scholar
Fripiat, J., Cases, J., Francois, M. and Letellier, M., 1982 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J. Colloid Interface Sci. 89 318340.CrossRefGoogle Scholar
Giese, R. F. and Costanzo, P. M., 1979 Synthesis of a monohydrate of kaolinite with d001 = 8.4 Å Geol. Soc. Amer. Abstr. 11 432.Google Scholar
Ginnings, D. C. and Furukawa, G., 1953 Heat capacity standards for the range 14–1200°K Amer. Chem. Soc. 75 522527.CrossRefGoogle Scholar
Guarini, G. G. L. and Spinicci, R., 1972 DSC study of the kinetics of thermal dehydration of BaCl2xH20 J. Therm. Anal. 4 435450.CrossRefGoogle Scholar
Hendricks, S. B. and Jefferson, M. E., 1938 Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays Amer. Mineral. 23 863875.Google Scholar
Kauppinen, J. K., Moffatt, J. D., Mantsch, H. H. and Cameron, D.G., 1981 Fourier transforms in the computation of self-deconvoluted and first-order derivation spectra of overlapped band contours Anal. Chem. 53 14541457.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L., 1966 Infrared studies of hydrogen bonding of organic compounds on oxygen and hydroxyl surfaces of layer lattice silicates Proc. Int. Clay Conf, Jerusalem, 1966 1 361374.Google Scholar
Lipsicas, M., Straley, C., Giese, R. F. and Costanzo, P. M., 1984 Static and dynamic structure water in hydrated kaolinite: Part II. The dynamic structure J. Colloid Interface Sci. .CrossRefGoogle Scholar
Low, P. F., 1979 Nature and properties of water in mont-morillonite-water systems Soil Sci. Soc. Amer. J. 43 651658.CrossRefGoogle Scholar
Nyquist, R. A. and Kagel, R. O., 1971 Infrared Spectra of Inorganic Compounds New York Academic Press 605.Google Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, J. P., 1968 Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes J. Phys. Chem. 72 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., 1971 The infrared spectra of interlamellar kaolinite-amide complexes. II. Acetamide, N-methylacetamide and dimethyl-acetamide J. Colloid Interface Sci. 37 536547.CrossRefGoogle Scholar
Prost, R., van Olphen, H. and Veniale, F., 1982 Near infrared properties of water in Na-hectorite pastes Proc. Int. Clay Conf, Bologna, Pavia, 1981 Amsterdam Elsevier 187195.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chem. Reviews 82 554572.CrossRefGoogle Scholar
Tarasevich, Y. I., 1980 The state of bound water in mineral suspensions Chem. Tech. Water 2 99108.Google Scholar
Tarasevich, Y. I. and Gribina, I. A., 1972 Infrared spectroscopic study of the state of water in halloysite Kolloidnyi Zh. 34 405411.Google Scholar
Yariv, S. and Shoval, S., 1975 The nature of the interaction between water molecules and kaolin-like layers in hydrated halloysite Clays & Clay Minerals 23 473474.CrossRefGoogle Scholar