Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:50:36.131Z Has data issue: false hasContentIssue false

Origin of Cretaceous and Oligocene Kaolinites from the Iwaizumi Clay Deposit, Iwate, Northeastern Japan

Published online by Cambridge University Press:  28 February 2024

C. Mizota
Affiliation:
Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020, Japan
F. J. Longstaffe
Affiliation:
Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7 Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrogen- (δD = −106 to −97‰) and oxygen-(δ18O = +14.0 to +16.6‰) isotope compositions of kaolinite from late Cretaceous and Oligocene deposits at Iwaizumi, northeastern Japan, indicate that these clays formed by weathering of volcanic parent rocks, rather than during hydrothermal (>100 °C) alteration. The Iwaizumi kaolinites also are depleted of D and 18O relative to kaolinite formed during modern, tropical weathering, suggesting that the kaolinite developed under cool or cool-temperate conditions. The oxygen-isotope compositions of the kaolinite increase slightly upward through the deposits, perhaps implying a modest increase in temperature from late Cretaceous to Oligocene time. The δD and δ18O results for kaolinite from the Oligocene deposits closely follow the kaolinite weathering line. However, a small but systematic deviation from this line for the Cretaceous kaolinites is most simply explained by post-formational, hydrogen-isotope exchange between these clays and downward percolating meteoric water.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Aharon, P.. 1983. Analysis of the anomalous 18O/16O and D/H isotope ratios in the tropical rainfall over the western Pacific Ocean. Trans Am Geophys Union 64: 196.Google Scholar
Bigeleisen, J., Perlman, M.L. and Prosser, H.C.. 1952. Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal Chem 24: 13561357.CrossRefGoogle Scholar
Bird, M.I.. 1988. Isotopically depleted rainfall and El Nino. Nature 331: 489490.CrossRefGoogle Scholar
Bird, M.I. and Chivas, A.R.. 1988. Stable-isotope evidence for low-temperature kaolinitic weathering and post-formational hydrogen-isotope exchange in Permian kaolinites. Chem Geol (Isotope Geosci Sec) 72: 249265.CrossRefGoogle Scholar
Biscaye, P.E.. 1965. Mineralogy and sedimentation of recent marine deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76: 802832.CrossRefGoogle Scholar
Botz, R.W., Hunt, J.W. and Smith, J.W.. 1986. Isotope geochemistry of minerals in Australian bituminous coal. J Sediment Petrol 56: 99111.Google Scholar
Clauer, N.F.. 1995. Centre de Geoch. de la Surface 1, rue Blessig, 67084 Strasbourg, France.Google Scholar
Clayton, R.N. and Mayeda, T.K.. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27: 4352.CrossRefGoogle Scholar
Coleman, M.L., Sheppard, T.J., Durham, J.J., Rouse, J.E. and Moore, G.R.. 1982. Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54: 993995.CrossRefGoogle Scholar
Craig, H.. 1961. Isotopic variations in meteoric waters. Science 133: 17021703.CrossRefGoogle ScholarPubMed
Dansgaard, W.. 1964. Stable isotopes in precipitation. Tellus 16: 436468.CrossRefGoogle Scholar
Davey, B.G., Russell, J.D. and Wilson, M.J.. 1975. Iron oxide and clay minerals and their relation to colours of Red and Yellow Podzolic Soils near Sydney, Australia. Geoderma 14: 125138.CrossRefGoogle Scholar
Dutta, P.K.. 1985. In search of the origin of cement in siliclastic sandstones: An isotopic approach. Chem Geol (Isotope Geosci Sec) 52: 337348.CrossRefGoogle Scholar
Epstein, S. and Mayeda, T.K.. 1953. Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4: 213224.CrossRefGoogle Scholar
Eslinger, E.V.. 1971. Mineralogy and oxygen isotope ratios of hydrothermal and low-grade metamorphic argillaceous rocks [Ph.D. Dissertation]. Cleveland, OH: Case Western Reserve University. 205 p.Google Scholar
Fujii, N.. 1970. Genesis of the flint clay deposit at the Iwate mine, northeast Japan. J Geol Soc Japan 76: 623636 (in Japanese).CrossRefGoogle Scholar
Godfrey, J.D.. 1962. The deuterium content of hydrous minerals from the East-Central Sierra Nevada and Yosemite National Park. Geochim Cosmochim Acta 26: 12151245.CrossRefGoogle Scholar
Hall, A.M., Mellor, A. and Wilson, M.J.. 1989. The clay mineralogy and age of deeply weathered rock in north-east Scotland. Z Geomorph 72: 97108.Google Scholar
Hassanipak, A.A. and Eslinger, E.V.. 1985. Mineralogy, crystallinity, 18O/16O and D/H of Georgia kaolins. Clays & Clay Miner 33: 99106.CrossRefGoogle Scholar
Hu, A. and Zhang, R.. 1988. Genesis of Iwate clay deposit, Japan. In: Report of International Research and Development Cooperation, Project No. 8314. Geological Survey of Japan, Agency of Industrial Science and Technology, Ministry of International Trade and Industry, Tsukuba, Ibaraki. p 117-137 (in Japanese).Google Scholar
Iijima, A.. 1972. Latest Cretaceous-Early Tertiary lateritic profile in northeastern Kitakami Massif, northeast Honshu, Japan. J Fac Sci Univ Tokyo, II 18: 325370.Google Scholar
Juo, A.S.R.. 1980. Mineralogical characteristics of Alfisols and Ultisols. In: Theng, B.K.G., editor. Soils with variable charge. New Zealand Soc Soil Sci. p 6986.Google Scholar
Kato, M., Fujiwara, Y., Minoura, N., Koshimizu, S. and Saito, M.. 1986. Fission track age of zircons in the Upper Cretaceous Yokomichi Formation, northern Kitakami Mountains, Japan. J Geol Soc Japan 92: 821822. (in Japanese)CrossRefGoogle Scholar
Kyser, T.K.. 1987. Equilibrium fractionation factors for stable isotopes. In: Kyser, T.K., editor. Stable isotope geochemistry of low temperature processes. Mineralog Assoc Canada, Short Course 13: 184.Google Scholar
Lambert, S.J. and Epstein, S.. 1980. Stable isotope investigations of an active geothermal system in Valles Caldera, Jemez Mountains, New Mexico. J Volcan Geotherm Research 8: 111129.CrossRefGoogle Scholar
Land, L.S. and Dutton, S.P.. 1978. Cementation of a Pennsylvanian deltaic sandstone: Isotopic data. J Sediment Petrol 48: 11671176.Google Scholar
Lawrence, J.R. and Taylor, H.P. Jr. 1971. Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35: 9931003.CrossRefGoogle Scholar
Lawrence, J.R. and Taylor, H.P. Jr. 1972. Hydrogen and oxygen isotope systematics in weathering profiles. Geochim Cosmochim Acta 36: 13771393.CrossRefGoogle Scholar
Liu, K.-K. and Epstein, S.. 1984. The hydrogen isotope fractionation between kaolinite and water. Isotope Geosci 2: 335350 and Chem Geol 46: 335–350.Google Scholar
Longstaffe, F.J.. 1983. Diagenesis, IV. Stable isotope studies of diagenesis in clastic rocks. Geosci Can 10: 4458.Google Scholar
Longstaffe, F.J.. 1989. Stable isotopes as tracers in clastic diagenesis. In: Hutcheon, I.E., editor. Burial diagenesis. Mineralog Assoc Canada, Short Course 15: 201277.Google Scholar
Longstaffe, F.J. and Ayalon, A.. 1990. Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta, Canada: evidence for exchange. Appl Geo-chem 5: 657668.Google Scholar
Macias-Vasquez, F.. 1981. Formation of gibbsite in soils and saprolites of humid temperate zones. Clays & Clay Miner 16: 4352.CrossRefGoogle Scholar
Marumo, K., Nagasawa, K. and Kuroda, Y.. 1979. The hydrogen isotopic composition of kaolin minerals in Japan. J Jpn Assoc Miner Petrol Econ Geol 74: 294300 (in Japanese).CrossRefGoogle Scholar
Marumo, K., Nagasawa, K. and Kuroda, Y.. 1980. Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma geothermal area, northeastern Japan. Earth Planet Sci Lett 47: 255262.CrossRefGoogle Scholar
Marumo, K., Matsuhisa, Y. and Nagasawa, K.. 1982. Hydrogen and oxygen isotopic compositions of kaolin minerals in Japan. In: Van Olphen, H., Veniale, F., editors. Developments in sed-imentology. International Clay Conference 1981. Elsevier Sci Pub 35: 315320.Google Scholar
Marumo, K., Longstaffe, F.J. and Matsubaya, O.. 1995. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan. Geochim Cosmochim Acta 59: 25452559.CrossRefGoogle Scholar
Mellor, A. and Wilson, M.J.. 1989. Origin and significance of gibbsitic montane soils in Scotland, U.K. Arctic Alpine Res 21: 417424.CrossRefGoogle Scholar
Minato, M., Gorai, M. and Funahashi, M.. 1965. The geological development of the Japanese Islands, Tsukiji Shokan. 442 p.Google Scholar
Mizota, C. and Kusakabe, M.. 1994. Spatial distribution of δD and δ18O values of surface and shallow groundwaters from Japan, south Korea and east China. Geochem J 28: 387410.CrossRefGoogle Scholar
Oilier, C.D.. 1969. Weathering. New York: American Elsevier. 1270.Google Scholar
O'Neil, J.R. and Kharaka, Y.K.. 1976. Hydrogen and oxygen isotope exchange reactions between clay minerals and water. Geochim Cosmochim Acta 40: 241246.CrossRefGoogle Scholar
Reynolds, R.C.. 1971. Clay mineral formation in an alpine environment. Clays & Clay Miner 19: 361374.CrossRefGoogle Scholar
Reynolds, R.C. and Johnson, N.M.. 1972. Chemical weathering in the temperate glacial environment of the Northern Cascade Mountains. Geochim Cosmochim Acta 36: 537554.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Moreno Real, L.. 1993. Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays & Clay Miner 41: 570579.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S.. 1970. Oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34: 2542.CrossRefGoogle Scholar
Savin, S.M. and Lee, M.. 1988. Isotopic studies of phyllosilicates. In: Bailey, S.W., editor. Hydrous phyllosilicates (exclusive of micas). Mineralog Soc Am, Reviews in Mineralogy 19: 189223.CrossRefGoogle Scholar
Schwertmann, U., Murad, E. and Schulze, D.G.. 1982. Is there Holocene reddening (hematite formation) in soils of axeric temperature areas? Geoderma 27: 209223.CrossRefGoogle Scholar
Sheppard, S.M.F., Nielson, R.L. and Taylor, H.P. Jr. 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ Geol 64: 755777.CrossRefGoogle Scholar
Sheppard, S.M.F.. 1977. The Cornubian batholith, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc (London) 133: 573591.CrossRefGoogle Scholar
Shimazaki, H. and Kusakabe, M.. 1990. D/H ratios of sericites from the Kamioka mining area. Mining Geol 40: 385388.Google Scholar
Suzuoki, T. and Epstein, S.. 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40: 12291240.CrossRefGoogle Scholar
Tanai, T., Iijima, A. and Agatsuma, T.. 1978. Late Cretaceous-Paleogene stratigraphy in the environs of the Iwate clay mine, northern Kitakami Massif, northeast Honshu. J Geol Soc Japan 84: 459473 (in Japanese).CrossRefGoogle Scholar
Taylor, H.P. Jr. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69: 843883.CrossRefGoogle Scholar
Van der Flier-Keller, E. and Fyfe, W.S.. 1987. Geochemistry of two Cretaceous coal-bearing sequences: James Bay lowlands, northern Ontario, and Peace River basin, northeast British Columbia. Can J Earth Sci 24: 10381052.CrossRefGoogle Scholar
Wilson, M.J.. 1969. A gibbsitic soil derived from the weathering of an ultrabasic rock on the island of Rhum. Scott J Geol 5: 8189.CrossRefGoogle Scholar
Yurtsever, Y. and Gat, J.R.. 1981. Atmospheric waters. In: Gat, J.R., Gonfiantini, R., editors. Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle. Vienna: International Atomic Energy Agency. p 103142.Google Scholar
Zheng, Y.-F.. 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120: 247263.CrossRefGoogle Scholar