Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T18:59:30.575Z Has data issue: false hasContentIssue false

Nontronite in a Deep-Sea Core from the South Pacific

Published online by Cambridge University Press:  02 April 2024

A. Singer
Affiliation:
Hebrew University of Jerusalem, Rehovot, Israel
P. Stoffers
Affiliation:
Institut für Sedimentsforschung, Universität Heidelberg, Heidelberg, Germany
L. Heller-Kallai
Affiliation:
Hebrew University of Jerusalem, Rehovot, Israel
D. Szafranek
Affiliation:
Hebrew University of Jerusalem, Rehovot, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Smectite close to the pure Fe end member of the nontronite-beidellite series was found in the fine clay separated from a 354-cm deep sediment core in the southwestern Pacific Basin. The mineral has a b-axis of 9.09 Å and an unusually low dehydroxylation temperature of 454°C and is composed of sheaves of fibers less than 50 Å wide. Its charge density is 5.09 × 10~4 esu/cm2. The charge originates mainly from the presence of 18% of the total Fe in tetrahedral positions, as determined by Mössbauer analysis. Slight deviations of the infrared spectra from those reported for nontronites are probably due to the presence of more octahedral Mg. The presence of authigenic quartz in the same sample permits some speculation on the concentration of dissolved silicon during nontronite genesis. A δ18O value of 26 ± 0.3‰ indicates a temperature of formation of about 22°C. The Sr isotope ratio suggests that the nontronite formed at least 12 million years ago.

Резюме

Резюме

Смектит, близкий чистому Ре конечному члену серии нонтронит-бейделлит, обнаруживался в мелкой глине, отделенной из 354 цм глубокой колонки осадка в юго-западном районе Тихого Океана. Минерал имеет ось b равную 9,09 Å и необыкновенно низкую температуру дегидроксилирования и состоит из связок волокон менее, чем 50 Å широких. Плотность заряда равна 5,09 х 10−4 эсе/цм2. Заряд возникает, главным образом, в следствие присутствия 18% всех атомов Ре в тетраэдрических местах, как это было определено при помощи анализа Мессбауера. Небольшие отклонения инфракрасного спектра этого минерала от спектра нонронита являются результатом присутствия большого количества октаэдрического Mg. Присутствие аутигенного вкарца в этом же самом образце дает возможность какого-либо предположения концентрации растворенного кремния во время генезиса нонтронита. Значение δ18O, равное 26 ± 0,3‰, указывает на температуру формирования около 22°С. Sr изотопный состав показывает, что нонтронит образовался по крайней мере 12 миллионов лет тому назад. [Е.G.]

Resümee

Resümee

Ein Smektit, der in der Zusammensetzung dem reinen Fe-Endglied der Nontronit-Beidellit-Mischungsreihe sehr nahekommt, wurde in der feinen Tonfraktion, die von einem 354 cm tiefen Sedimentbohrkern von südwestlichen Pazifik Becken abgetrennt wurde, gefunden. Das Mineral hat eine kleine è-Achse von 9,09 Å und eine ungewöhnlich niedrige Dehydroxilierungstemperatur von 454°C und ist aus Faserbündeln zusammengesetzt, die eine Dicke unter 50 Å haben. Seine Ladungsdichte beträgt 5,09 × 10−4 esu/cm2. Die Ladung rührt hauptsächlich von der Anwesenheit von 18% Gesamteisen in tetraedri-scher Koordination her, wie aus der Mössbauerbestimmung hervorgeht. Geringe Abweichungen der Infrarotspektren von denen, die für Nontronit angegeben werden, kommen wahrscheinlich durch die Anwesenheit von mehr oktaedrischem Mg. Die Anwesenheit von autigenem Quarz in der gleichen Probe erlaubt einige Spekulationen über die Konzentration des gelösten Siliziums während der Nontronitent-stehung. Ein δ18O-Wert von 26 ± 0,3‰ deutet auf eine Bildungstemperatur von etwa 22°C hin. Das Sr-isotopen Verhältnis läßt daraufschließen, daß der Nontronit vor mindestens 12 Millionen Jahren gebildet wurde. [U.W.]

Résumé

Résumé

De la smectite proche du membre terminal Fe pur de la série nontronite-beidellite a été trouvée dans l'argile fine séparée d'une carotte sédimentaire de 354 cm de profondeur dans la Basin Pacifique du sud-ouest. Le minéral a un axe-b de 9,09 Å et une température de déshydroxylation inhabituellement basse de 454°C et est composé d'un ensemble de fibres d'une longueur de moins de 50 Å. Sa densité de charge est 5,09 × 10~” esu/cm2. L'origine de la charge est principalement due à la présence de 18% du Fe total en positions tétraèdrales, comme l'a déterminé l'analyse de Mössbauer. De légères déviations des spectres infrarouges par rapport à ceux déterminés pour des nontronites sont probablement dues à la présence de plus de Mg octaèdral. La présence de quartz authigénique dans le même échantillon permet quelque speculation quant à la concentration de silice dissoute pendant la genèse nontronite. Une valeur δ18O de 26 ± 0,3‰ indique une température de formation d'environ 22°C. La proportion d'isotope Sr suggère que la nontronite s'est formée il y a au moins 12 million d'années. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Bischoff, J. L., 1972 A ferroan nontronite from the Red Sea geothermal system Clays & Clay Minerals 20 217223.CrossRefGoogle Scholar
Bonatti, E., Kraemer, T., Rydell, H. S. and Horn, D. R., 1972 Classification and genesis of submarine iron-manganese deposits Ferro-manganese Deposits on the Ocean Floor New York Arden House 149166.Google Scholar
Brigarti, M. F., 1983 Relationships between composition and structure in Fe-rich smectites Clay Miner. 18 177186.CrossRefGoogle Scholar
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F. and Otto, J. B., 1982 Variation of seawater 87Sr/86Sr throughout Phanerozoic time Geology 10 516519.2.0.CO;2>CrossRefGoogle Scholar
Carter, D. L., Heilman, M. D. and Gonzalez, C. L., 1965 Ethylene glycol monoethyl ether for determining surface area of silicate minerals Soil Sci 100 356360.CrossRefGoogle Scholar
Cicel, B. and Machajdik, D., 1981 Potassium and ammonium-treated montmorillonites. I. Interstratified structures with EG and water Clays & Clay Minerals 29 4046.CrossRefGoogle Scholar
Cole, T. G. and Shaw, H. F., 1983 The nature and origin of authigenic smectites in some recent marine sediments Clay Miner. 18 239252.CrossRefGoogle Scholar
Corliss, J. B., Lyle, M., Dymond, J. and Crane, K., 1978 The chemistry of hydrothermal mounds near the Galapagos Rift Earth Planet. Sci. Lett. 40 1224.CrossRefGoogle Scholar
Despraires, A., 1983 Relation entre le paramètre b des smectites et leur contenu en fer et magnésium. Application à l’étude des sédiments Clay Miner. 18 165175.CrossRefGoogle Scholar
Dymond, J., Corliss, J. B., Cobler, R., Murati, Ch M, Chou, G. and Conard, R., 1980 Composition and origin of sediments recovered by deep drilling of sediment mounds, Galapagos Spreading Center Initial Reports of Deep-Sea Drilling Project 54 377385.Google Scholar
Eggleton, R. A., 1977 Nontronite: chemistry and X-ray diffraction Clay Miner. 12 181194.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D., Fraser, A. R. and Woodham, F. W. D., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5359.CrossRefGoogle Scholar
Grimm, R. E. and Güven, N., 1978 Bentonites Amsterdam Elsevier.Google Scholar
Harder, H., 1971 Quartz and clay mineral formation at surface temperatures Mineral. Soc. Japan Spec. Rep. 1 106108.Google Scholar
Harder, H., 1976 Nontronite synthesis at iow temperatures Chem. Geol. 18 169180.CrossRefGoogle Scholar
Hoffert, M. (1980) Les “argiles rouges des grands fonds” dans le Pacifique Centre Est: authigenèse, transport, di-agenèse: Sci. Geol. Strasbourg 61 231 pp.Google Scholar
Hoffert, M., Perseil, A., Hekinian, R., Choukroune, P., Needham, H. D., Francheteau, J. and Le Pichon, X., 1978 Hydrothermal deposits sampled by diving saucer in Transform Fault “A” near 37°N on the Mid-Atlantic Ridge. Famous Area Oceanologica Acta 1 7386.Google Scholar
Kurnosov, V., Kholodkevich, I., Kokorina, L., Kotov, N., Chudaev, O., van Olphen, H. and Veniale, F., 1982 The origin of clay minerals in the oceanic crust revealed by natural and experimental data Proc. Inter. Clay Conf., Bologna, Pavia 1981 Amsterdam Elsevier 547556.Google Scholar
MacEwan, D. M. and Brown, G., 1961 Montmorillonite minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 143207.Google Scholar
McMurtry, G. M., Wang, C.-H. and Yeh, H.-W., 1983 Chemical and isotopie investigations into the origin of clay minerals from the Galapagos Hydrothermal Mound Field Geochim. Cosmochim. Acta 47 475489.CrossRefGoogle Scholar
Méring, J., Oberlin, A. and Gard, J. A., 1971 The smectites The Electron-Optical Investigation of Clays London Mineralogical Society 193230.CrossRefGoogle Scholar
Moorby, S. and Cronaw, D., 1983 The geochemistry of hydrothermal and pelagic sediments from the Galapagos Hydrothermal Mounds Field, DSDP Leg 70 Mineral. Mag. 47 291300.CrossRefGoogle Scholar
Newman, A. C., 1983 The specific surface of soils determined by water absorption J. Soil Sci. 34 2332.CrossRefGoogle Scholar
Plate, T. M., 1981 Plate Tectonic Map of the Cir-cum-Pacific Region, SE Quadrant Tulsa, Oklahoma Amer. Assoc. Petrol. Geol..Google Scholar
Rateev, M. A., Timofeev, P. P., Rengarten, N. V. et al. , Rosendahl, B. R., Hekinian, R. 1980 et al. , Minerals of the clay fraction of Pliocene Quaternary sediments of the East Equatorial Pacific Initial Reports of the Deep-Sea Drilling Project, Vol. 54 Washington, D.C. U.S. Government Printing Office 307318.Google Scholar
Rozenson, I., Bauminger, E. R. and Heller-Kallai, L., 1979 Mössbauer spectroscopy of iron in 1:1 phyllosilicates Amer. Miner. 64 893901.Google Scholar
Schrader, E. L., Rosendahl, B. R., Furbish, W. J. and Mattey, D. P., 1980 Mineral and geochemistry of hydrothermal and pelagic sediments from the mounds hydrothermal fields, Galapagos Spreading Center: DSDP, leg 54 J. Sediment. Petrol. 50 917927.Google Scholar
Staudigel, H., Hart, S. R. and Richardson, S. H., 1981 Alteration of the oceanic crust: processes and timing Earth & Planet. Sci. Lett. 52 311327.CrossRefGoogle Scholar
Stoffers, P., Pluger, W., Lallier-Verges, E., Schmitz, W. and Hoffert, H., 1984 A new hydrothermal deposit in the South Pacific Mar. Geol. .CrossRefGoogle Scholar
Sudo, T., Shimoda, S., Yotsumoto, H. and Aita, S., 1981 Electron Micrographs of Clay Minerals Amsterdam Elsevier Sci. Publ..Google Scholar
Weaver, C. A. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Yeh, H. W. and Savin, S. M., 1977 Mechanisms of burial metamorphism of argillaceous sediments. 3.0-isotope evidence Geol. Soc. Amer. Bull. 88 13211330.2.0.CO;2>CrossRefGoogle Scholar