Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:08:26.709Z Has data issue: false hasContentIssue false

Influence of Grinding and Sonication on the Crystal Structure of Talc

Published online by Cambridge University Press:  01 January 2024

Vladimír Čavajda
Affiliation:
Department of Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Peter Uhlík*
Affiliation:
Department of Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
Arkadiusz Derkowski
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1, PL-31002, Kraków, Poland
Mária Čaplovičova
Affiliation:
Department of Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia STU Centre for Nanodiagnostics, Slovak University of Technology, Vazovova 5, 812 43, Bratislava, Slovakia
Jana Madejová
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravskà cesta 9, Bratislava, Slovakia
Milan Mikula
Affiliation:
Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Radlinského 9, 812 37, Bratislava, Slovakia
Tomáš Ifka
Affiliation:
Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Talc is an important industrial mineral with a broad range of applications. Particle size and crystal structure have a significant influence on the potential uses. The present study examined the influence of grinding and ultrasound treatment on talc from a new deposit, Gemerská Poloma, in Slovakia. The general knowledge that grinding produces progressive structural disorder leading to amorphization, whereas sonication has a negligible effect on the talc crystal structure, was confirmed by X-ray diffraction (XRD), infrared (IR) spectroscopy, and transmission electron microscopy (TEM). Partial reduction of particle size along with delamination was observed by XRD after sonication, low-angle laser light scattering (LALLS), scanning electron microscopy (SEM), and TEM. The specific surface area (SSA) increased slightly after prolonged sonication, but grinding initially caused a rapid increase in SSA followed by a drastic decrease after prolonged grinding time of up to 120 min which was attributed to the aggregation of amorphized talc. Sonication and grinding had different influences on the thermal behavior of the talc studied. Sonication decreased slightly the dehydroxylation temperature, whereas grinding added a significant mass loss at low temperature, arising from the dehydration of hydrated Mg cations released from the talc structure during amorphization. The initial high whiteness value of talc decreased slightly after grinding or sonication. Thermogravimetry was suggested as a useful tool to track and predict changes in the talc structure upon sonication and grinding.

Type
Article
Copyright
Copyright © Clay Minerals Society 2015

References

Ali, F. Reinert, L. Levêque, J.-M. Duclaux, L. Muller, F. Saeed, S. and Shah, S.S., 2014 Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron-sized vermiculite particles Ultrasonics Sonochemistry 21 10021009.CrossRefGoogle ScholarPubMed
Aglietti, E.F., 1994 The effect of dry grinding on the structure of talc Applied Clay Science 9 139147.CrossRefGoogle Scholar
Allen, T., 2003 Powder Sampling and Particle Size Analysis 1st edition Amsterdam Elsevier Science 682.Google Scholar
Balek, V. Šubrt, J. Peérez-Maqueda, L.A. Benes, M. Bountseva, I.M. Beckman, I.N. and Pérez-Rodríguez, J.L., 2008 Thermal behavior of ground talc mineral. Journal of Mining and Metallurgy Section B: Metallurgy 44 717.Google Scholar
Brindley, G.W. Lemaitre, J., Newman, A.C.D., 1987 Thermal oxidation and reduction reactions of clay minerals Chemistry of Clays and Clay Minerals London Mineralogical Society.Google Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Bukas, V.J. Tsampodimou, M. Gionis, V. and Chryssikos, G.D., 2013 Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying Vibrational Spectroscopy 68 5160.CrossRefGoogle Scholar
Čavajda, V. (2014) Characterization of talc from Gemerská Poloma deposit. PhD thesis, Comenius University, Bratislava, 139 pp.Google Scholar
Chen, D. Sharma, S.K. and Mudhoo, A., 2012 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability Boca Raton, Florida, USA CRC Press 718.Google Scholar
Christidis, G.E. Makri, P. and Perdikatsis, V., 2004 Influence of milling on the structure and colour properties of talc, bentonite and calcite white fillers Clay Minerals 39 163175.CrossRefGoogle Scholar
Christidis, G.E. Sakellariou, N. Repouskou, E. and Marcopoulos, T.H., 2004 Influence of organic matter and iron oxides on the colour properties of a micritic limestone from Kefalonia Bulletin of the Geological Society Greece 36 7279.CrossRefGoogle Scholar
CIE (International Commission on Illumination) (2004) Colorimetry. CIE 15, Technical Report, 3rd edition, 72 pp.Google Scholar
Dellisanti, F. and Valdrè, G., 2008 Linear relationship between thermo-dehydroxylation and induced-strain by mechanical processing in vacuum: The case of industrial kaolinite, talc and montmorillonite International Journal of Mineral Processing 88 9499.CrossRefGoogle Scholar
Dellisanti, F. Valdrè, G. and Mondonico, M., 2009 Changes of the main physical and technological properties of talc due to mechanical strain Applied Clay Science 42 398404.CrossRefGoogle Scholar
Dellisanti, F. Minguzzi, V. and Valdrè, G., 2011 Mechanical and thermal properties of a nanopowder talc compound produced by controlled ball milling Journal of Nanoparticle Research 13 59195926.CrossRefGoogle Scholar
Drits, V.A. and Derkowski, A., 2015 Kinetic behavior of partially dehydroxylated kaolinite American Mineralogist 100 883896.CrossRefGoogle Scholar
Drits, V.A. Eberl, D.D. and Środoń, J., 1998 XRD measurement of mean thickness, thickness distribution and strain for illite and illite/smectite crystallites by the Bertau—Warren—Averbach technique Clays and Clay Minerals 46 3850.CrossRefGoogle Scholar
Drits, V.A. Derkowski, A. and McCarty, D.K., 2012 Kinetics of partial dehydroxylation in dioctahedral 2:1 layer clay minerals American Mineralogist 97 930950.CrossRefGoogle Scholar
Eberl, D.D. (2003) User’s guide to RockJock — a program for determining quantitative mineralogy from powder X-ray diffraction data. Open-File Report 03-78, U.S. Geological Survey.CrossRefGoogle Scholar
Eberl, D.D., Drits, V.A., Środoń, J., and Nüesch, R. (1996) MudMaster: a program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks. Open-File Report 96–171, U.S. Geological Survey.CrossRefGoogle Scholar
Evans, B.W. Guggenheim, S., Bailey, S.W., 1988 Talc, pyrophyllite and related minerals Hydrous Phyllosilicates Chantilly, Virginia, USA Mineralogical Society of America.Google Scholar
Farmer, V.C., Farmer, V.C., 1974 Layer silicates Infrared Spectra of Minerals London Mineralogical Society.CrossRefGoogle Scholar
Filippov, L.O. Joussemet, R. Irannajad, M. Houot, R. and Thomas, A., 1999 An approach of the whiteness quantification of crushed and floated talc concentrate Powder Technology 105 106112.CrossRefGoogle Scholar
Glasson, D.R., 1981 Vacuum balance studies of milled material and mechanochemical reactions Thermochimica Acta 51 4552.CrossRefGoogle Scholar
Gregg, S.J., 1968 Surface chemical study of comminuted and compacted solids Chemistry and Industry 11 611617.Google Scholar
Gümüştaş, S. Köseoğlu, K. Yalçinkaya, E.E. and Balcan, M., 2014 Characterization and dielectric properties of sodium fluoride doped talc Clay Minerals 49 551558.CrossRefGoogle Scholar
Jamil, N.H. and Palaniandy, S., 2010 Acid medium sonication: A method for the preparation of low density talc nanosheets Powder Technology 200 8790.CrossRefGoogle Scholar
Jamil, N.H. and Palaniandy, S., 2011 Comparative study of water-based and acid-based sonications on structural changes of talc Applied Clay Science 51 399406.CrossRefGoogle Scholar
Jaynes, W.F. and Boyd, S.A., 1991 Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water Clays and Clay Minerals 39 428436.CrossRefGoogle Scholar
Kano, J. and Saito, F., 1998 Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method Powder Technology 98 166170.CrossRefGoogle Scholar
Kilík, J., 1997 Geologická charakteristika mastencového ložiska Gemerské Poloma — Dlhá dolina Acta Montanistica Slovaca 1 7180.Google Scholar
Kogel, J.E., Trivedi, N.C., Barker, J.M., and Krukowski, S.T., 2006)editors (Industrial Minerals and Rocks: Commodities, Markets, and Uses. 7th edition. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, USA, 1548 pp.Google Scholar
Kogure, T. Kameda, J. Matsui, T. and Miyawaki, R., 2006 Stacking structure in disordered talc: interpretation of its X-ray diffraction pattern by using pattern simulation and high-resolution transmission electron microscopy American Mineralogist 91 13631370.CrossRefGoogle Scholar
Kuligiewicz, A., Derkowski, A., and Kruszewski, L. (2013) How dry is a “dry” smectite. 50th Annual Meeting of the Clay Minerals Society, 6–10 October 2013, Urbana-Champaign, Illinois, USA.Google Scholar
Kumar, A.P. Depan, D. Singhtomer, N. and Singh, R.P., 2009 Nanoscale particles for polymer degradation and stabilization — Trends and future perspectives Progress in Polymer Science 34 479515.CrossRefGoogle Scholar
Liu, X. Liu, X. and Hu, Y., 2014 Investigation of the thermal decomposition of talc Clays and Clay Minerals 62 137144.CrossRefGoogle Scholar
McCarthy, F.E. Genco, A.N. Reade, H.E., Elzea Kogel, J. Trivedi, N.C. Barker, J.M. and Krukowski, S.T., 2006 Talc Industrial Minerals and Rocks: Commodities, Markets, and Uses 7th edition Littleton, Colorado, USA Society for Mining, Metallurgy, and Exploration, Inc..Google Scholar
Mekhamer, W.K., 2010 The colloidal stability of raw bentonite deformed mechanically by ultrasound Journal of Saudi Chemical Society 14 301306.CrossRefGoogle Scholar
Murray, H.H., 2007 Applied Clay Mineralogy Amsterdam Elsevier 180.Google Scholar
Nakahira, M. and Kato, T., 1964 Thermal transformation of pyrophyllite and talc as revealed by X-ray and electron diffraction studies Clays and Clay Minerals 12 2127.CrossRefGoogle Scholar
Palaniandy, S. Azizli, N.H.J.K.A.M. Hashim, S.F.S. and Hussin, H., 2009 Production of talc nanosheets via fine grinding and sonication processes Journal of Nuclear and Related Technologies 6 111.Google Scholar
Perdikatsis, V. and Burzlaff, H., 1981 Strukturverfeinerung am Talk Mg3[(OH)2Si4O10] Zeitschrift für Kristallographie 156 177186.Google Scholar
Pérez-Maqueda, L.A. Blanes, J.M. Pascual, J. and Pérez-Rodríguez, J.L., 2004 The influence of sonication on the thermal behavior of muscovite and biotite Journal of the European Ceramic Society 24 27932801.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. Jiménez De Haro, M.C. Poyato, J. and Pérez-Rodríguez, J.L., 2004 Comparative study of ground and sonicated vermiculite Journal of Materials Science 39 53475351.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. Montes, O.M. Gonzalez-Macias, E.M. Franco, F. and Pérez-Rodríguez, J.L., 2004 Thermal transformation of sonicated pyrophyllite Applied Clay Science 24 201207.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. Duran, A. and Pérez-Rodríguez, J.L., 2005 Preparation of submicron talc particles by sonication Applied Clay Science 28 245255.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Carrera, F. Poyato, J. and Pérez-Maqueda, L.A., 2002 Sonication as a tool for preparing nanometric vermiculite particles Nanotechnology 13 382387.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Pascual, J. Franco, F. Jiménez de Haro, M.C. Duran, A. Ramírez del Valle, and Pérez-Maqueda, L.A., 2006 The influence of ultrasound on the thermal behaviour of clay minerals Journal of the European Ceramic Society 26 747753.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Wiewióra, A. Ramirez-Valle, V. and Pérez-Maqueda, L.A., 2007 Preparation of nano-pyrophyllite. Comparative study of sonication and grinding Journal of Physics and Chemistry of Solids 68 12251229.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Duran, A. Sánchez Jiménez, P.E. Franquelo, M.L. Perejón, A. Pascual-Cosp, J. and Pérez-Maqueda, L.A., 2010 Study of the dehydroxylationrehydroxylation of pyrophyllite Journal of the American Ceramic Society 93 23922398.CrossRefGoogle Scholar
Petit, S. Martin, F. Wiewióra, A. De Parseval, P. and Decarreau, A., 2004 Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study American Mineralogist 89 319326.CrossRefGoogle Scholar
Poli, A.L. Batista, T. Schmitt, C.C. Gessner, F. and Neumann, M.G., 2008 Effect of sonication on the particle size of montmorillonite clays Journal of Colloid and Interface Science 325 386390.CrossRefGoogle ScholarPubMed
Ptáček, P. Šoukal, F. Opravil, T. Havlica, J. Másilko, J. and Wasserbauer, J., 2013 Preparation of dehydroxylated and delaminated talc: Meta-talc Ceramics International 39 90559061.CrossRefGoogle Scholar
Radvanec, M., Bajtoš, P., Németh, Z., Koděra, P., Prochaska, W., Roda, Š., Tréger, M., Baláž, P., Grecula, P., Cicmanová, S., Krá, J., and Žák, K. (2010) Magnesite and Talc in Slovakia — Genetic and Geoenvironmental Models. State Geological Institute of Dionýz Štúr, Slovakia, 179 pp.Google Scholar
Rumpf, H. Schubert, H., Onoda, G. and Hench, L., 1978 Adhesion forces in agglomeration processes Ceramic Processing before Firing New York Wiley.Google Scholar
Sánchez-Soto, P.J. Wiewióra, A. Avilés, M.A. Justo, A. Pérez-Maqueda, L.A. Pérez-Rodrígez, J.L. and Bylina, P., 1997 Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape Applied Clay Science 12 297312.CrossRefGoogle Scholar
Şener, S. and Özyılmaz, A., 2010 Adsorption of naphthalene onto sonicated talc from aqueous solutions Ultrasonics Sonochemistry 17 932938.CrossRefGoogle ScholarPubMed
Sidorová, M. and Čorej, P., 2013 Flotation method in talc material processing from the Gemerská Poloma Deposit in Slovakia Gospodarka Surowcami Mineralnymi 29 3746.CrossRefGoogle Scholar
Soriano, M. Melgosa, M. Sánchez-Maranón, M. Delgado, G. Gámiz, E. and Delgado, R., 1998 Whiteness of talcum powders as a quality index for pharmaceutical uses Color Research and Application 23 178185.3.0.CO;2-A>CrossRefGoogle Scholar
Suslick, K.S., 1989 The chemical effects of ultrasound Scientific American 260 8086.CrossRefGoogle Scholar
Środoń, J. Drits, V.A. McCarty, D.K. Hsieh, J.C.C. and Eberl, D.D., 2001 Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations Clays and Clay Minerals 49 514528.CrossRefGoogle Scholar
Tamura, K. Yokoyama, S. Pascua, C.S. and Yamada, H., 2008 New age of polymer nanocomposites containing dispersed high-aspect-ratio silicate nanolayers Chemistry of Materials 20 22422246.CrossRefGoogle Scholar
Tao, Q. Su, L. Frost, R.L. Zhang, D. Chen, M. Shen, W. and He, H., 2014 Silylation of mechanically ground kaolinite Clay Minerals 49 559568.CrossRefGoogle Scholar
Terada, K. and Yonemochi, E., 2004 Physicochemical properties and surface free energy of ground talc Solid State Ionics 172 459462.CrossRefGoogle Scholar
Tessier, D. (1984) Étude experimental de l’organisation des materiaux argileux. Dr. Science thesis, Univ. Paris VII, France.Google Scholar
Togari, K., 1979 Whiteness in colour of talc Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy 19 213220.Google Scholar
Uhlík, P. Šucha, V. Eberl, D.D. Puškelová, L. and Čaplovičová, M., 2000 Evolution of pyrophyllite particle sizes during dry milling Clay Minerals 35 423432.CrossRefGoogle Scholar
Vdović, N. Jurina, I. Skapin, S.D. and Sondi, I., 2010 The surface properties of clay minerals modified by intensive dry milling Applied Clay Science 48 575580.CrossRefGoogle Scholar
Velho, J.A. and Gomes, C., 1991 Characterization of Portuguese kaolins for the paper industry: beneficiation through new delamination techniques Applied Clay Science 6 155170.CrossRefGoogle Scholar
Virta, R.L., 2010 Mineral Commodity Summaries 2010 Reston, Virginia, USA U.S. Geological Survey 193.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Wilkins, R.W.T. and Ito, J., 1967 Infrared spectra of some synthetic talcs American Mineralogist 52 16491661.Google Scholar
Wiewióra, A. Pérez-Rodríguez, J.L. Perez-Maqueda, L.A. and Drapała, J., 2003 Particle size distribution in sonicated high- and low-charge vermiculites Applied Clay Science 24 511661.CrossRefGoogle Scholar
Wiewióra, A. Pérez-Rodríguez, J.L. Perez-Maqueda, L.A. and Drapała, J., 2003 Particle size distribution in sonicated high- and low-charge vermiculites Applied Clay Science 24 51.CrossRefGoogle Scholar
Yang, H. Du, C. Hu, Y. Jin, S. Yang, A. and Awakumov, E.G., 2006 Preparation of porous material from talc by mechanochemical treatment and subsequent leaching Applied Clay Science 31 290297.CrossRefGoogle Scholar
Zdrálková, J., Valášková, M., and Študentová, S. (2013) Talc properties after acid treatment and mechanical procedures. NANOCON 2013, 16.-18.10, Brno, Czech Republic, 6 pp.Google Scholar
Ziadeh, M. Chwalka, B. Kalo, H. Schuütz, M.R. and Breu, J., 2012 A simple approach for producing high aspect ratio fluorohectorite nanoplatelets utilizing a stirred media mill (ball mill) Clay Minerals 47 341353.CrossRefGoogle Scholar
Zvyagin, B.B. Mishchenko, K.S. and Soboleva, S.V., 1969 Structure of pyrophyllite and talc in relation to the polytypes of mica-type minerals Soviet Physics-Crystallography 13 511515.Google Scholar