Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:25:48.741Z Has data issue: false hasContentIssue false

Dickite, Nacrite and Possible Dickite/Nacrite Mixed-Layers from the Betic Cordilleras (Spain)

Published online by Cambridge University Press:  28 February 2024

M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias. Universidad de Málaga (Spain)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nacrite, dickite and intermediate dickite-nacrite phases have been identified from the upper Paleozoic sequences of the Maláguide Complex (Betic Cordilleras, Spain). Nacrite developed as euhedral, pseudohexagonal or elongated crystals within sandstones and thin, irregular veins. Dickite developed preferently within extensive zones of fractures as very irregular, compact packets. Intermediate phases occurred in the sandstones and veins similar to the nacrite, or accompanying dickite. The mineral assemblage of the sandstones includes quartz-muscovite-kaolinite-type minerals, with or without albite, carbonates, chlorite and mixed-layers containing chlorite. The metamorphic conditions in which these minerals formed belong to anchizone, as can be deduced from the IC values. Dickite, nacrite and intermediate phases were studied by X-ray diffraction, infrared spectroscopy, differential thermal analysis and micros-copy. The results for dickite indicate a well-ordered mineral and agree with most of the published data. Conversely, IR spectra and DTA curves of nacrite show some differences in relation to the available data for this mineral. Based on the comparison with dickite and nacrite data, intermediate phases can be interpreted either as disordered varieties or as mixed-layered dickite/nacrite.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Bailey, S.W.. 1963. Polymorphism of the kaolin minerals. Am Miner 48: 11961209.Google Scholar
Bourgois, J.. 1978. La transversale de Ronda (Cordillères Bétiques, Espagne). Donnés géologiques pour un modele d'évolution de l'arc de Gibraltar. Ann Sci Univ Besançon Géol 3ème série 30: 445p.Google Scholar
Brindley, G.W.. 1980. Order-disorder in clay mineral structures. In: Brindley, G.W., Brown, G., editors. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society. 125195.CrossRefGoogle Scholar
Brindley, G.W. and Porter, A.R.D.. 1978. Occurrence of dickite in Jamaica. Ordered and disordered varieties. Am Mineral 63: 554562.Google Scholar
Bühmann, D.. 1988. An occurrence of authigenic nacrite. Clays & Clay Miner 36: 137140.CrossRefGoogle Scholar
Deer, V.A., Howie, R.A. and Zussman, J.. 1976. Rock-forming minerals. Vol. 3: Sheet silicates. London: Longman. 270 p.Google Scholar
Dunoyer de Segonzac, G.. 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentol 15: 281326.CrossRefGoogle Scholar
Farmer, V.C.. 1974. The infrared spectra of minerals. London: Mineralogical Society. 539 p.CrossRefGoogle Scholar
Felder, T.E.. 1978. Zur geologischen Entwicklung der Betischen Internzonen der westlichen Serranía de Ronda (Prov. Málaga, Spanien). Zurich: Mitt Geol Inst ETH. 222: 168 p.Google Scholar
Ferrero, J. and Kubler, B.. 1964. Presence de dickite et de kaolinite dans les grès Cambriennes d'Hassi Massaoud. Bull Serv Carte Geol Als Lorr 17: 247261.Google Scholar
Frey, M.. 1987. Very low-grade metamorphism of clastic sedimentary rocks. In: Frey, M., editor. Low temperature metamorphism. Glasgow and London: Blackie. 958.Google Scholar
Hanson, R.F., Zamora, R. and Keller, W.D.. 1981. Nacrite, dickite and kaolinite in one deposit in Nayarit, Mexico. Clays & Clay Miner 29: 451453.CrossRefGoogle Scholar
Islam, A.K.M.E. and Lotse, E.G.. 1986. Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Miner 21: 3142.CrossRefGoogle Scholar
Kisch, H.J.. 1990. Calibration of the ankizone: A critical comparison of illite crystallinity scales used for definition. J Metamorphic Geol 8: 3146.CrossRefGoogle Scholar
Kisch, H.J.. 1991. Illite crystallinity: Recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J metamorphic Geol 9: 665670.CrossRefGoogle Scholar
Mackenzie, R.C.. 1970. Simple phyllosilicates based on gibbsite and brucite-like sheets. In: Mackenzie, R.C., editor. Differential thermal analysis. London: Academic Press, p 498537.Google Scholar
Mäkel, G.G.. 1985. The Geology of the Malaguide Complex and its bearing on the Geodynamic evolution of the Betic-Rif orogen (Southern Spain and northern Marocco). Gua Papers of Geology. 22: 263 p.Google Scholar
Plançon, A. and Zacharie, C.. 1990. An expert system for the structural characterization of kaolinites. Clay Miner 25: 249260.CrossRefGoogle Scholar
Prost, R., Dameme, A., Huard, E., Driard, J. and Leydecker, J.P.. 1989. Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K. Clays & Clay Miner 37: 464468.CrossRefGoogle Scholar
Rouxhet, P.G., Samadacheata, N., Jacobs, H. and Anton, O.. 1977. Attribution of the OH stretching bands of kaolinite. Clay Miner 12: 171178.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Moreno Real, L.. 1993. Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays & Clay Miner 41: 570579.CrossRefGoogle Scholar
Ruiz Cruz, M.D.. 1996a. Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Miner 31: 133152.CrossRefGoogle Scholar
Ruiz Cruz, M.D.. 1996b. Criterios mineralógicos utilitados en el análisis del Permotrías Malaguide. Cuad Geol Ibérica 20: 3759.Google Scholar
Russell, J.D.. 1987. Infrared methods. In: Wilson, J.M., editor. A handbook of determinative methods in clay mineralogy. Glasgow: Blackie. 133173.Google Scholar
Shen, Z.Y., Wilson, M.J., Fraser, A.R. and Pearson, M.J.. 1994. Nacritic clay associated with the Jiangshan—Shaoxing deep fault in Zhejiang province, China. Clays & Clay Miner 42: 576581.CrossRefGoogle Scholar
Shultz, L.G.. 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol Surv Prof Paper 391-C: 31p.CrossRefGoogle Scholar
Shutov, V.D., Aleksandrova, A.V. and Losievskaya, S.A.. 1970. Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentol 15: 6982.CrossRefGoogle Scholar
Suitch, P.R. and Young, R.A.. 1983. Atom positions in highly ordered kaolinite. Clays & Clay Miner 31: 357366.CrossRefGoogle Scholar
Van der Marel, H.W. and Beutelspacher, H.. 1976. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam: Elsevier. 396 p.Google Scholar
Wada, K.. 1965. Intercalation of water in kaolin minerals. Am Mineral 50: 924941.Google Scholar
Wilson, M.J.. 1987. X-ray diffractions. In: Wilson, J.M., editor. A handbook of determinative methods in clay mineralogy. Glasgow: Blackie. 2698.Google Scholar
Zheng, H. and Bailey, S.W.. 1994. Refinement of the nacrite structure. Clays & Clay Miner 42: 4652.CrossRefGoogle Scholar