Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T19:55:32.909Z Has data issue: false hasContentIssue false

Determination of Structural Defects in Phyllosilicates by X-Ray Powder Diffraction—II. Nature and Proportion of Defects in Natural Kaolinites

Published online by Cambridge University Press:  01 July 2024

A. Plançon
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045, Orléans Cedex, France
C. Tchoubar
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045, Orléans Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Until now, the different attempts to describe the defects of kaolinites were based on the ideas that (i) the hkl reflections with k = 3n are Bragg reflections, while (ii) the hkl reflections with k ≠ 3n are affected by ±b/3 translations or ±2π/3 rotations. With regard to this conception, this work provides several important precisions: (i) The h, 3n, l′ reflections are true continuous diffraction bands, more or less modulated, and disturbed by the existence, in the stacking, of random shifts parallel to the layer plane. (ii) The major defect in natural kaolinites is not the ±b/3 translation, but the displacement from one layer to the other (or from one domain to another in the same layer) of the Al vacancies. (iii) The model containing true rotation of layers should be rejected because it does not allow us to interpret all the different parts of the experimental diagrams. Such a concept of defects in kaolinites is in agreement with the existence of polytypes of kaolinite, with the presence of twins, and allows us to interpret some physico-chemical properties such as the infrared spectra.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Bailey, S. W. (1963) Polymorphism of the kaolin minerals: Am. Miner. 48, 11961209.Google Scholar
Barrios, J., Plançon, A., Cruz, M. I. and Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in an hydrazine treated kaolinite—relationship with the infrared spectra: Clays and Clay Minerals 25, 422429.CrossRefGoogle Scholar
Brindley, G. W. (1961) The X-Ray Identification and Crystal Structures of Clay Minerals (Edited by Brown, G.) , pp. 51131: The Mineralogical Society, London.Google Scholar
Brindley, G. W. and Kurtossy, S. (1961) Quantitative determination of kaolinite by X-ray diffraction: Am. Miner. 46, 12051215.Google Scholar
Brindley, G. W. and Mering, J. (1951) Diffraction des rayons X par les structures en couches désordonnées: Acta Cryst. 4, 441447.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals: Trans. Faraday Soc. 42B, 198205.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K. (1947) X-ray study of some kaolinitic fire clays: Trans. Brit. Ceram. Soc. 46, 4962.Google Scholar
Croche, R. (1976) Etudes expérimentales et théoriques des corrections d'aberrations instrumentales d'un diagramme de diffraction des rayons X: Thèse, Paris.Google Scholar
De Courville, J., Tchoubar, C. and Tchoubar, D. (to be published) J. Appl. Cryst.Google Scholar
Fleurence, A. and Nicolas, J. (1964) Observations sur la notion d'ordre et de désordre de certains minéraux de groupe de la kaolinite: Bull. Gr. Fr. Arg. 14, 149162.Google Scholar
Gatineau, L. and Mering, J. (1958) Précisions sur la structure de la muscovite: Clay Miner. Bull. 3, 238243.CrossRefGoogle Scholar
Giese, R. F. (1973) Interlayer bonding in kaolinite, dickite and nacrite: Clays and Clay Minerals 21, 145149.CrossRefGoogle Scholar
Giese, R. F. (1974) The interlayer bonding in one-layer kaolin structures: Clays and Clay Minerals 22, 139140.Google Scholar
Goodyear, B. and Duffin, M. A. (1961) An X-ray examination of an exceptionally well crystallized kaolinite: Miner. Mag. 32, 902907.Google Scholar
Guinier, A. (1964) Théorie et Technique de la Radiocristallographie: Dunod, Paris.Google Scholar
Hugues, R. and Bohor, B. (1970) Random clay powders prepared by spray-drying: Am. Miner. 55, 17801786.Google Scholar
Maire, J. and Mering, J. (1970) Chemistry and Physics of Carbon (Edited by Walker, P. L.) , Vol. 6, pp. 125189: Marcel Dekker, New York.Google Scholar
Mansfield, C. F. and Bailey, S. W. (1972) Twin and pseudotwin intergrowth in kaolinites: Am. Miner. 57, 411425.Google Scholar
Martin, R. T. (1966) Quantitative fabric of wet kaolinite: Clays and Clay Minerals 14, 271287.CrossRefGoogle Scholar
Mering, J. (1949) L'interférence des rayons X dans les systèmes à stratification désordonnée: Acta Cryst. 2, 371377.CrossRefGoogle Scholar
Mitra, G. B. (1963) Structure defects in kaolinite: Z. Kristallogr. 119, 161175.CrossRefGoogle Scholar
Mitra, G. B. and Bhattacherjee, S. (1969a) Layer disorder in kaolinite during dehydration: Acta Cryst. B25, 16681669.CrossRefGoogle Scholar
Mitra, G. B. and Bhattacherjee, S. (1969b) X-ray diffraction studies on the transformation of kaolinite into metakaolin—I. Variability of interlayer spacings: Am. Miner. 54, 14091418.Google Scholar
Mitra, G. B. and Bhattacherjee, S. (1970) X-ray diffraction studies on the transformation of kaolinite into metakaolin—II. Study of layer shift: Acta Cryst. B26, 21242128.CrossRefGoogle Scholar
Murray, H. H. (1954) Structural variations of some kaolinites in relation to dehydrated halloysite: Am. Miner. 39, 97108.Google Scholar
Murray, H. H. and Lyons, S. C. (1956) Correlation of paper-coating quality with degree of crystal perfection of kaolinite: Clays and Clay Minerals 4, 3140.Google Scholar
Newnham, R. E. (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals: Miner. Mag. 32, 683704.Google Scholar
Niskanen, E. (1964) Reduction of orientation effects in the quantitative X-ray diffraction analysis of kaolin minerals: Am. Miner. 49, 705714.Google Scholar
Noble, F. R. (1971) A study of disorder in kaolinite: Clay Miner. 9, 7180.CrossRefGoogle Scholar
Norrish, K. and Taylor, R. M. (1962) Quantitative analysis by X-ray diffraction: Clay Miner. Bull. 5, 98109.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1975) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—I. Modèle ne comportant que des fautes par translation: J. Appl. Cryst. 8, 582588.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1976) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—II. Modèle d'empilement comportant des fautes par rotation: J. Appl. Cryst. 9, 279285.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray diffraction—I. Principle of calculation of the diffraction phenomenon: Clays and Clay Minerals 25, 430435.CrossRefGoogle Scholar
Robertson, R. H. S., Brindley, G. W. and Mackenzie, R. C. (1954) Mineralogy of kaolin clays from Pugu, Tanganyika: Am. Miner. 39, 118138.Google Scholar
Rousseaux, F. and Tchoubar, D. (1975) Méthode d'analyse du profil de bande produite par des feuillets diffractants ayant une forme anisométrique: J. Appl. Cryst. 8, 365371.CrossRefGoogle Scholar
Tchoubar, C. and Clinard, C. (to be published).Google Scholar
Zvyagin, B. B. (1960) Electron diffraction determination of the structure of kaolinite: Dokl. Akad. Nauk S.S.S.R. 130(5).Google Scholar
Zvyagin, B. B. (1967) Electron Diffraction Analysis of Clay Mineral Structures: Plenum Press, New York.CrossRefGoogle Scholar