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Abstract-Until now, the different attempts to describe the defects of kaolinites were based on the 
ideas that (i) the hkl reflections with k = 3n are Bragg reflections, while (ii) the hkl reflections with 
k of 311 are affected by ± b/3 translations or ± 211/3 rotations. With regard to this conception, this 
work provides several important precisions: (i) The h, 3n, [' reflections are true continuous diffraction 
bands, more or less modulated, and disturbed by the existence, in the stacking, of random shifts 
parallel to the layer plane. (ii) The major defect in natural kaolinites is not the ± b/3 translation, 
but the displacement from one layer t o the other (or from one domain to another in the same layer) 
of the Al vacancies. (iii) The model containing true rotation of layers should be rejected because 
it does not allow us to interpret all the different parts of the experimental diagrams. Such a concept 
of defects in kaolinites is in agreement with the existence of polytypes of kaolinite, with the presence 
of twins, and allows us to interpret some physico-chemical properties sllch as the infrared spectra. 

INTRODUCTION Bhattachergee, 1969a, b, 1970) have assumed only a 
b/3 disorder and have used a method for measuring 

The stacking disorder in natural kaolinites has been the number of defects which implies a Stoke's decon­
studied by many investigators for the last 30 years, volution. So the method can be applied only in the 
mainly by using X-ray powder diffraction. In the case of a small number of defects [i.e. hkO reflections 
beginning, it was pointed out for the disordered kao- not smeared in a (hk) band]. Noble (1971) has con­
linites that the hkl reflections with k multiple of 3 sidered that the diffraction by a stacking is the sum 
(k = 3n) seemed to be largely unaffected by stacking of the diffraction by identical independent sub-stack­
faults, while those with k not a multiple of 3 (k =f- 3n) ings together with the diffraction by single layers. 
were deformed into (hk) asymmetrical bands (Brind- He has not studied the peculiar role of the. kind of 
ley and Robinson, 1946, 1947). Afterwards, it was fault between two adjacent sub-stackings, on the dif­
shown that the (hk) bands of disordered kaolinites fraction phenomenon. Furthermore, none of these 
could be modulated and that the h, 3n, 1 reflections authors has discussed the cause of the h, 3n, I reflec­
could be broadened. The existence of a whole series tion broadening in the case of highly disordered kao­
of kaolinites with different amounts of disorder has !inites. 
been recognized (Murray and Lyons, 1956 ; Brindley, For these different reasons, we have undertaken the 
1961 ; Fleurence and Nicolas, 1964). study of defects in kaolinites, in order to determine 

Several kinds of defects have been proposed for the (i) what kinds of defects can explain the experimental 
interpretation of these diagra ms. The deformation of diagrams of the whole series of natural kaolinites, (ii) 
the h, 3n, I reflections has been attributed to a de- the proportion of these defects in some kaolinites 
crease of the coherent volume in the crystallites, while more or less disordered. 
the deformation of the hkl reflections with k =f- 3n has The method which has been employed for this 
been successively attributed to : study consists in a comparison of the experimental 

(i) ±b/3 translations (Brindley and Robinson, profiles of the 02(1), 11(1) and 20(1), 13 (I) reflections 
1946); with theoretica l profiles calculated from different 

(ii) ±2n/3 rotations (Murray, 1954); models of layer stackings. 
(iii) formation of polytypes (Zvyagin, 1967) by 2n/3 In the first part of this paper (Planc;:on and Tchou-

rotations associated to peculiar transla tions. bar, 1977) and in two previous articles (planc;:on and 
Several attempts have been made to measure the Tchoubar, 1975, 1976), the authors have described the 

amount of defects in natural kaolinite, but they have mathematical treatment used for the calcUlation of 
given only partial solutions, because they have not the profiles for translative stacking faults and for rota­
considered the different possible kinds of defects or tive ones. This paper does not take up again this for­
not considered the whole series of natural kaolinites. rnalism but applies it to the determina tion of the 
For example, Mitra et al. (Mitra, 1963; Mitra and stacking model which permits the best interpretation 
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of the experimental powder patterns of the whole 
series of natural kaolinites. 

EXPERIMENTAL 

Recording of the experimental patterns 

The method of work being a comparison between 
theoretical and experimental profiles, it is necessary 
to obtain well-defined recordings. The transmission 
diffraction method allows a correct evaluation of the 
experimental deformations in the range of small dif­
fraction angles. The influence of the irradiated thick­
ness and of the beam absorption are well defined 
(Croche, 1976) and the aberrations coming from the 
sample roughness are suppressed. We have used a 
c.G.R. diffractometer, where the flat sample is verti­
cal. The kaolinite powder is kept between two poly­
styrene sheets (thickness: 0.03 mm). The Ka) radi­
ation of Cu is isolated by a quartz monochromator 
which gives a linear focus. The )./2 harmonic is elim­
inated by energy discrimination. The displacement of 
the counter is done by steps of 0.01 ° e. At each step, 
104 photons are counted. The slits are adjusted for 
the minimization of the 'umbrella' effect [e.g. 8 mm 
high for the (02,11) band]. The broadening of the ex­
perimental reflections is avoided by using thin 
samples (0.5 mm thick) and a narrow analysis slit 
(width: 0.01 °8). The experimental measurements must 
then be corrected only for polarization and absorp­
tion. The background coming from scattering by air 
and polystyrene is withdrawn. The experimental in­
tensities which are presented in this work correspond 
to these corrected profiles. 

Preparation of the samples and measurement of misor­
ientation 

The reflection intensities in a powder pattern are 
appreciably affected by the particle orientation (Brind­
ley and Kurtossy, 1961; Norrish and Taylor, 1962). 
Several methods have been proposed for obtaining 
isotropic samples (Niskanen, 1964; Martin, 1966; 
Hughes and Bohor, 1970) but complete isotropism 
is obtained with difficulty because of the anisotropic 
shape of the particles (thin plates). 

In the case of kaolinites, a good minimization of 
the orientation is obtained by freeze-drying of 
aqueous suspensions of kaolinites (quick freezing of 
the suspension followed by a sublimation of water 
in vacuum). This leads to a powder resembling snow. 
The orientation of particles in the sample is then 
determined as described in part I of this paper. The 
number N(a) of particles which have their plane at 
an angle a with respect to the plane of the sample 
will be given later in Figure 3 for the studied samples. 

Selection of kaolinites 

A preliminary study has been done on about 30 
kaolinites coming from different countries [English 
Cornwall, French Cornwall, Provins (France), Char­
entes (France), Georgia (U.S.A.)]. Four samples repre-

sentative of the whole series of natural kaolinites have 
been choosen. We give in Figure 1 the (02,11) band 
and (20,13) band of each sample. (In these figures, 
the intensities in arbitrary units are given versus the 
modulus of the diffusion vector s.) Sample no. 1 
(Figure 1a and b) is a well-crystallized kaolinite com­
ing from Georgia. Sample no. 4 (Figure Ig and h) 
is a highly disordered kaolinite of the fire-clay type 
coming from Charentes. Samples no. 2 (Figure lc and 
d) and 3 (Figure Ie and f) coming from Charentes 
are two intermediate kaolinites which have approxi­
mately the same (02,11) band but sample no. 2 has 
a (20,13) band like that of the well-crystallized kao­
linite while no. 3 has a (20,13) band like that of the 
highly disordered kaolinite. The corresponding 001 
reflections are given in Figure 2. 

The corresponding orientations for these samples 
are shown in Figure 3. We can see that freeze-drying 
allows us to obtain an almost isotropic sample in 
the case of the well-crystallized kaolinite no. 1 (curve 
no. 1), but a partial orientation remains in the other 
samples, mainly ill the highly disordered kaolinite no. 
4 (curve no. 4). The orientations for the intermediate 
kaolinites no. 2 (curve no. 2) and no. 3 (curve no. 
3) lie between those of the previous ones. 

COMPARISON OF EXPERIMENTAL PROFILES 
WITH THEORETICAL PROFlLES CALCULATED 

FROM DIFFERENT STACKING MODELS 

It has been noted previously that the modification 
of the 20(1), 13(1) reflections of the highly disordered 
kaolinites is usually explained by decreasing, in the 
plane of the layer, the dimensions of the diffracting 
volume. But, in fact , an. accurate comparison of the 
(20,13) bands of a well-crystallized kaolinite (sample 
no. 1, Figure Ib) and of a highly disordered one 
(sample no. 4, Figure Ih) shows that the profile's 
modification does not consist only of broadening, but 
also of a deformation with fading of the 0.394 and 
0.436 A -1 modulations. The disappearance of these 
modulations cannot be reproduced by modifying the 
size of the crystallite diffracting volume. We have 
therefore been led to account for the existence of a 
defect which affects also the h, 3n, I reflections of kao­
linites and hence the (20,13) reflections. 

In a more simple lamellar structure, the graphitiz­
able carbons, Maire and Mering (1970) have shown 
the existence of random stacking faults which break 
the interference between the hk(l) beams diffracted by 
the sub-stackings that they separate (except where 
h = k = 0). The introduction of the possibility of ran­
dom stacking faults in our models leads to correct 
fits between theoretical and experimental profiles. We 
come back to the physical nature of these defects in 
the discussion. 

From now on, all the models· described will there­
fore contain random stacking faults and other defects, 
as the ± b/3 translation proposed by Brindley and 
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Figure 1. Experimental profiles of (02,11) and (20,13) bands for: kaolinite no. 1 (a and b), kaolinite 
no. 2 (c and d), kaolinite no. 3 (e and I), kaolinite no. 4 (g and h). 
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Figure 2. Experimental profiles of 001 reflections for : kaolinite no. 1 (a), kaolinite no. 2 (b). kaolinite 
no. 3 (c), kaolinite no. 4 (d). 
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Figure 3. Orientation curves for the four studies kaolinites 
samples (kaolinite no. 1: curve 1; kaolinite no. 2: curve 
2; kaolinite no. 3: curve 3; kaolinite no. 4: curve 4). The 
horizontal dotted line corresponds to a complete 

misorientation. 

Robinson (1946), which will be described in the fol­
lowing paragraph. 

Calculated data for a model containing only translative 
stacking faults 

In Part I, we have shown that the intensity dif­
fracted by a powder of stackings containing only 
translated identical layers can be obtained from for­
mula (9): 

I(s) = ':s f N(<p) I F(Z) I 2 G(Z) T(X) d<p . 

We shall detail now this calculation for the particu­
lar case of kaolinites, as explained in a previous paper 
(Plam;on and Tchoubar, 1975). 

Calculation of M. The average number of layers 
per crystallite can be approximated from the 001 ex­
perimental reflection by using the Scherrer formula. 
We obtain for the well-crystallized kaolinite (no. 1) 
M = 75; for the kaolinite no. 2, M = 40; for the kao­
linite no. 3, M = 30; for the kaolinite no. 4, M = 25. 

Calculation ofF(Z). The calculation of the structure 
factor F(Z) is performed by using the cell parameters 
given by Goodyear and Duffin (1961) and the atomic 
coordinates corresponding to a real layer where the 
Si04 tetrahedra are turned and deformed as well as 
the Al02(OH)4 octahedra (Zvyagin, 1960; Figure 4). 
Furthermore, the possibility of a static deformation 
is introduced for taking into account the deviation 
of the local atomic coordinates from the mean ones. 
The scattering factor of each atom is then multiplied 
by exp( - Bs- 2) (Guinier, 1964) ; the B factors used for 
kaolinites no. 2 and no. 4 are those proposed by 

a 

b 

00 
.. OH 
• AL 
• S i 

Figure 4. Projection of the real kaolinite layer on (001). 
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Gatineau and Mering (1958) for muscovite 
(BSi = BAI = 0.15, Bo = BaH = 0.5). These coefficients 
are half reduced for kaolinite no. 3 and taken equal 
to zero for the well-crystallized kaolinite, no. l. 

Calculation oJG(Z). The calculation of the modula­
tion function G(Z) involves the proportion P of ran­
dom defects and the proportion '1, of ± h/3 translative 
defects. We have (Mering, 1949); 

1 - U2 2U 
G= + -

1 + U 2 
- 2U cos (0 M 

sponding values of the T(X) function are given by 
Brindley and Mering (1951). We shall find that for 
the same sample, the R values are different for the 
(02,11) and (20,13) bands. This difference can be 
explained (Plan90n and Tchoubar, 1975) by the exist­
ence of mosaic domains. 

In the previous paper, the calculation had been 
applied to the two extreme cases of the series of 

[2U - (1 + U2)cos (OJ [1 - UM cos M(OJ - (1 - U2
) UM sin M(O sin (0 

x 
(1 + U2 

- 2U cos (0)2 

Assuming an equal proportion of + h/3 and -h/3 
defect, we have then 

U = (1 - P)[1 - '1, + '1, cos(2n s· h/3)J 
(0 = 2n s' tic> 

where tk is the translation between two well-ordered 
adjacent layers. 

The tk translation is introduced assuming the possi­
bility of a partial monoclinicity of the symmetry 
which increases with the disorder of the kaolinite 
(Brindley and Robinson, 1946, 1947 ; Robertson et al., 
1954). 

Then tk can be expressed by 

tk = fli a + Vi h + z, 

with Izl = dool = 7.156 A and fli = PM - CM(flT 
- PM) and VI = VM - CM(VT - VM), where I1T and VT 
characterize the translation between two adjacent 
layers of a perfect triclinic kaolinite (I1T = -0.369 
and VT = 0.024, CM = 0) while 11M and VM are relative 
to a perfect monoclinic kaolinite (flr = -0.333 and 
VM = 0, CM = 1). 

Calculation oj T(X). This calculation is performed 
by assuming that the coherent crystallite volumes are 
cylinders of radius R in the layer plane. The corre-
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natural kaolinites, namely the well-crystallized one 
(sample no. 1) and the highly disordered one (sample 
no. 4). The conclusion for these two samples was that 
the ± h/3 defects lead to a 'rather good agreement' 
between the experimental and theoretical profiles but, 
at this time, the results did not take into account 
the effect of the orientation. This orientation has been 
measured at a later date (Figure 3, curves 1 and 4) 
and introduced in a new calculation of profiles. The 
conclusions remain the same as previously, and the 
best fit is obtained with almost the same values, that 
is to say P = 0.03 and '1, = 0.05 for kaolinite no. 1 
(Figure 5a and b) and P = 0.17 and '1, = 0.37 for kao­
linite no. 4 (Figure 6a and b). The disagreements 
located at the minima of modulations remain in this 
calculation and can be interpreted either by the pre­
vious hypothesis (absence of a distribution of thick­
ness of stackings) or by the hypothesis of an aniso­
metry of the particles [rectangular shape of the coher­
ent diffracting volume; Rousseaux and Tchoubar 
(1976)J. 

Thus, if only the two extreme cases are examined, 
it seems that the ± h/3 model is satisfactory. The con­
clusion is different when it is applied to partially dis­
ordered kaolinites (samples 2 and 3) because while 
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Figure 5(a) and (b). Experimental and calculated profiles (full line) of (02,11) band and (20,13) band 
for the kaolinite no. 1 (P = 0.03, '1, = 0.05, eM = 0) by using a model containing only translative 
stacking faults; the intensities are in arbitrary units; the experimental values are represented by open 

circles. 
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Figure 6(a) and (b). Experimental and calculated profiles of (02,11) band and (20,13) band for kaolinite 
no. 4 (P = 0.17, '1. = 0.37, CM = 0.25) by using a model containing only translative stacking faults. 

it is possible to obtain good fits for the (20,13) bands, 
it is impossible to obtain a good agreement for the 
(02,11) bands. 

We give here the example of the intermediate kao­
linite no. 2. The fit is good for the (20,13) band with 
a proportion P = 0.07 of random defects (Figure 7b). 
But not any proportion 11, of ± h/3 defects leads to 
a good agreement for the (02,11) band. With 
11, = 0.34, we have the best agreement for the modula­
tions located at 0.239 and 0.260 A - 1, but the 0.229 
A -I experimental modulation has almost disappeared 
in the calculated profile (Figure 7a). Inversely, when 
the first modulation is in agreement, the others are 
in disagreement. In the same way, it is impossible 
to describe the (02,11) band profile of kaolinite no. 
3, by using a ± h/3 modeL 

So, these results show that it is impossible to de­
scribe the entire series of natural kaolinites by a 
model containing only translative stacking faults. This 
model is then rejected, and we have considered 
models containing rotative stacking faults. 

Calculated data for nwdels containing rotative stacking 
faults 

It is necessary here to give a precision concerning 
the ± 2n/3 rotation and its use in the customary de­
scription of kaolinite pQlytypes. 

In the case of an idealized layer [Si04 tetrahedra 
and AIOz(OH)4 octahedra not deformed and not 
turned], it is equivalent to say that a layer is turned 
by 2n/3 or that it is not rotated but takes its Al vacan-
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cies in another position. This is shown in Figures 8(a) 
and (b). The layer of Figure 8(b) can be considered 
(i) as identical to the layer shown in Figure 8(a), but 
rotated by 2n/3 (dotted cell) or (ii) as an unrotated 
layer (full line cell) where the Al vacancy is in the 
C position rather than the B position (Bailey, 1963). 

Now, the accurate description of the kaolinite layer 
(Zvyagin, 1960) and of the dickite layer (Newnham, 
1961) shows that, in a real layer, the tetrahedra and 
octahedra are turned and deformed (Figure 4). In this 
case, it is not equivalent to have a rotation of 2n/3 
or to have only a displacement of the Al vacancies, 
and one should distinguish between two kinds of de­
fects, either by true rotation of non-idealized layers 
or by displacement of Al vacancies in unrotated 
layers. 

The description of the diffraction by models con­
taining one or the other concept of fault uses the 
same mathematical formalism described in part I of 
this work. The intensity diffracted by a stacking con­
taining stacking faults and/or variations in the layer 
structure can be obtained from formula (10), modified 
by taking into account the partial orientation 

Rotation of invariable layers. In such a model, one 
can consider 
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Figure 7(a) and (b). Experimental and calculated profiles of (02,11) band and (20,13) band for kaolinite 
no. 2 (P = 0.07, 11, = 0.34, CM = 0) by using a model containing only translative stacking faults. 
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a' 

b b' 
-------...... - .. _-----

Figure 8(a) and (b). Rotated idealized layers for kaolinite. 

(i) arbitrary + 2n/3 or - 2n/3 rotations (Murray, 
1954), 

(ii) rotative stacking faults such two adjacent layers 
are disposed one relative to the other only as in the 
dickite (Zvyagin, 1967), 

(iii) rotative stacking faults which lead to the enan­
tiomorphic polytype (Zvyagin, 1967). 

In a previous paper (Plaw;on and Tchoubar, 1976), 
it has been shown that cases (ii) and (iii) should be 
rejected, because they never lead to an almost unmo­
dulated (02,11) band. 

What we can add now is that model (i) also should 
be rejected. In fact, this model leads to a correct fit 
for the (02,11) band but, since the symmetry of the 
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layer is not exactly trigonal, a I1r proportion of 2n/3 
rotation modifies too much the (20,13) band profile 
by comparison with the experimental profile. 

This can be illustrated by the case of kaolinite no. 
2. The proportion P of random defects is determined 
by using the (20,13) band (P = 0.07) and is besides 
introduced in the calculation of the (02,11) band 
simultaneously with an IJr proportion of defects by 
±2n/3 rotation. The best fit is obtained for IJr = 0.47 
(Figure 9a). But even without using the 0.07 propor­
tion of random defects, tl1e recalculated profile of the 
(20,13) band with IJr = 0.47 is much more deformed 
(Figure 9b) than the experimental profile (Figure 9c): 
one notices that the 0.394 A -1 reflection disappears 
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Figure 9(aHc)' Experimental and calculated profiles of (02,11) band and (20,13) band of kaolinite 
no. 2 by using a model containing 2n/3 rotations of real layers. (a) (02,11) band profile calculated 
with P = 0.07 and Yfr = 0.47, (b) (20,13) band profile calculated with Yfr = 0.47, (c) experimental (20,13) 

band profile. 
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Figure 10. Theoretical profiles in the case of a maximum disorder by: (a) arbitrary displacement of 
Al vacancies, (b) displacement of Al vacancies only such as in dickite, (c) birth of the enantiomorphic 

polytype. 

and that the two experimental reflections at 0.427 and 
0.435 A -\ are smeared in a single peak in the calcu­
lated profile. The same results are obtained with the 
other kaolinites. 

This leads to reject the concept of rotation of real 
layers in the explanation of the X-ray diagrams of 
partially disordered kaolinites. 

Displacement of Al vacancies. We should consider 
models containing three types of defects by displace­
ment of AI vacancies from one layer to the other, 
that is to say: 

(i) arbitrary displacement of Al vacancies from B 
to A or C positions, 

(ii) displacement of Al vacancies only so that they 
have, in two adjacent layers, the same position as 
in dickite, 

(iii) displacement of Al vacancies which leads to 
formation of the enantiomorphic kaolinite. 

To determine the validity of these different models, 
we have calculated the theoretical profiles for the case 
of maximum disorder consistent with each one of the 
models. This calculation shows that models (ii) and 
(iii) give theoretical (02,11) band profiles too much 
modulated (Figure lOb and c) with regard to the ex­
perimental (02,11) band of the highly disordered kao­
linite. Only the model (i) leads to a theoretical (02,11) 
band almost unmodulated (Figure lOa) and can then 
be kept. 

This model is described more precisely now. 

Two adjacent layers are well ordered when they 
are translated by tk as in the well-crystallized kaolinite 
and when all the atoms remain at the same place 
in the two layers. Two adjacent layers show a stack­
ing fault when they are translated by tk, but when 
the AI3 + ions and consequently the AI vacancies 
occupy different positions in the two layers. 

The tk translation between well-ordered adjacent 
layers depends on the A, B or C position of the Al 
vacancies. Thus, the tk translation can take three poss­
ible orientations in an external referential, corre­
sponding to the three possible positions of Al vacan­
cies, namely to (AI vacancy in B), t+ (AI vacancy in 
C) or L (AI vacancy in A). The cell being centered, 
we have t + = to + b/3 and L = to - b/3. The three 
possible structure factors F 0, F + and F _ are calcu­
lated by using the previous atomic co-ordinates for 
the 0 and Si atoms, and (x, y) co-ordinates for the 
AI3+ ions which are (-1/3;0) and (1/6;1/6) for Fo, 
(-1/3 ;0) and (1 /6; -1/6) for F + and (1/6;1/6) and 
(1/6;-1/6) for L. 

Contrary to the model with faults by rotation of 
real layer, this model with displacement of Al vacan­
cies has no influence on the h, 3n, I reflections, and 
these remain sensitive only to the random defects pre­
viously defined. 

The different terms of the expression (10) of part 
I are calculated in the same way as for the model 
containing translative stacking faults, except the lXij(Z) 
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terms which are calculated by using the Q matrix below: 

(1 - I'/d)exp(21tis· to) !J.cl exp(2nis· to) 
2 

1'/d exp(2nis . to) 
2 

Q= Y/d (1 - '7d )exp(21tis· t+ ) I1d exp(2nis .t+) "2 exp(21tis . t+ ) 
2 

~ exp(21tis· L) ~ exp(2nis, t _ ) (1 - '7d )exp(2nis . L ) 

where 1'fd is the proportion of defects by displacement 
of Al ·vacancies. 

The best fits obtained with this model are shown 
in the Figure 11 [one does notice that the (20,13) 
band profiles take account for the foot of the (02,11) 
band]: 

For the well-crystallized kaolinite no. 1 (Figure l1a 
and b) with a proportion P of random defects equal 
to 0.03 and a proportion 1'/d of faults by displacement 
of AI vilcancies from one layer to the adjacent one 
equal to 0.08. The (02,11) band is calculated with a 
radius crystallite R I = 750 A while the (20,13) band 
is calculated with R2 = 250 A; 

for the first intermediate kaolinite no. 2 (Figure llc 
and d) with P = 0.G7 and '7d = 0.47 (Rl = 1000 A, 
R2 = 250 A); 

for the second intermediate kaolinite no. 3 (Figure 
lie and f) with P = 0.15 and fld = 0.42 (Rl = 500 A, 
R2 = 125 A); 

fOf the highly disordered kaolinite no. 4 (Figure 
llg and h) with P = 0.17 and 11.1 = 0.53 (Rl = 600 
A, R2 = 150 A). 

We can then notice a rather good agreement 
between the experimental and calculated profiles 
while the differences which persist at the minima of 
modulations can probably be interpreted, as pre­
viously, by an absence of distribution of thickness in 
the calculations or by an anisometry of the diffracting 
volume. The accuracies of the P and '7d proportions 
are about 20% for the well-crystallized kaolinite and 
6% for the disordered ones. 

So the experimental profiles of the studied kao­
linites, representative of the whole series of natural 
kaolinites more or less disordered, can fairly be repro­
duced by using a stacking model containing simul­
taneously faults by displacement of AI vacancies from 
one layer to the other, and random stacking faults. 

DISCUSSION 

Hypothesis of interaction only between first neighbour­
ing layers 

The calculations which have been done assume an 
interaction between first neighbouring layers only. 
The validity of this hypothesis in the case of kaolinite 
is first checked by the quality itself of the fit between 
the calculated intensities and the experimental ones. 
Moreover, calculations of interaction between layers 
have been performed by Giese (personal communica­
tion, 1976), who calculated the electrostatic energy for 

structural models compounds with packets of two 
layers. Inside a packet, the layers are 7.15 A apart 
while the packets are a distance ~ apart (Figure 12). 
The electrostatic energy of the structure is calculated 
for different ts shifts of layers inside a packet and 
for different values of ~. The value of ~ being fixed, 
the calculated energies for each ts shift are written 
on an energy map where the lower parts con'espond 
to the stable mutual positions of the layers inside a 
packet (Giese, 1973, 1974). Giese sees that for ~ 
greater than 7 A, the energy maps are closely sirnilar, 
that is to say that tbe electrostatic interaction between 
packets becomes negligible. It can be concluded that 
interaction between kaolinite layers is sensitive only 
to a distance of a few angstroms and that kaolinite 
layers interact only with their first neighbours. 

Physical sense of random defects 

The random defects described above suppress the 
interference between the beams diffracted by the sub­
stackings that they separate. They can be conceived 
in two difl'erent ways, either the sub-stacking are ran­
domJy rotated around the normal to the layer or they 
are randomly shifted parallel to the layer plane 
(Maire and Mering, 1970). The selected area electron 
diffraction shows that a morphologicaly single par­
ticle of kaolinite always gives a monocrystal diffrac­
tion pattern (Figure 13). This leads to the conclusion 
that the random defects are defects by random trans­
lation. 

Moreover, the doo1 distance between layers 
obtained from the position of the band modulations 
is always of 7.15 A, w.hile the dool distance obtained 
from the position of the 001 reflections reaches 7.20 
A and even more in highly disordered kaolinites. This 
shows that the 001 reflections and the (hk) bands are 
not produced by the same coherent volumes (Maire 
and Mering, 1970). The coherent volume for the (hk) 
band are the sub-stackings limited by a random defect 
on each side; inside the sub-stacking, the Jayers are 
equidistant as in the perfect triclinic kaolinite. On the 
contrary, the coherent volume producing the 001 re­
flections includes the random defects; then a measure­
ment, from the reflections, of a value of. dOD1 greater 
than 7.15 A, shows that the increasing of the basal 
distance is located only between two adjacent layers 
randomly translated. 

The lattice imaging in electron microscopy allows 
a visualisation of these defects. Figure 14 corresponds 
to a high resolution image obtained from a cross-sec-
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Figure 11. Experimental and calculated profiles of (02,11) band and (20,13) band for the four studied 
kaolinites by using a model containing faults by displacement of Al vacancies. Kaolinite no. 1 (a 
and b) with P = 0.03, 1)d = 0.08, CM = 0, kaolinite no. 2 (c and d) with P = 0,07, 1)d = 0.47,CM = 0, 
kaolinite no. 3 (e and f) with P = 0.15, 1)d = 0.42, CM = 0.25, kaolinite no. 4 (g and h) with P = 0.17, 

1)d = 0.53, C M = 0.25. 
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Figure 15. Sketch of random defects caused by a bubble or a folder. 

Figure 16(a)~(c). Possible defects (AI vacancies displacements and translative defect) in kaolinite, by 
superposition of non-identical domains. 
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calcula tion of the electrostatic energy. 
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Figure 13. Selected area electron diffraction from kaolinite 
particle. 

-fbi 
Figure 14. Visualization of the layers by lattice imaging in electron microscopy. (a) Well-crystallized 

kaolinite no. 1, (b) poorly crystallized kaolinite no. 4. 
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tion of particles of kaolinite perpendicular to the layer 
planes (Tchoubar and Clinard, to be published). 
Figure 14(a) shows a domain of a particle of well-crys­
tallized kaolinite where there exists a great number 
of bubbles. Figure 14tb) shows a particle of poorly 
crystallized kaolinite no. 4. Within a particle, the 
layers are generally parallel and distant from about 
7.15 A but, in some regions (shown by arrows), two 
adjacent layers are distant from 8 or 9 A. Such defects 
can originate the random translation described above 
because the 'bubble' or 'folder' leads simultaneously 
to a modification of the basal spacings and to a ran­
dom translation of the cells of adjacent layers (Figure 
15). This translation probably remains random 
beyond the bubble domain. 

Physical sense of defects by displacement of AI vacan­
cies 

This type of defect is in agreement with the conclu­
sions drawn by Mansfield and Bailey (1972) in a study 
of twins in kaolinite. These authors propose a growth 
of kaolinite based on three types of domains in which 
the Al vacancies stay in the A, B or C position. At 
the end of the growth, a layer should be built of differ­
ent domains separated by twin's joints. Such a de­
scription allows us to give a physical sense to the 
defects by displacement of Al vacancies: it corre­
sponds to the superimposition of layers where the Al 
vacancies do not stay in the same position. 

Furthermore, the Mansfield and Bailey description 
involves a possible coexistence of displacement of Al 
vacancy defect with ± h/3 translative defect. For 
example (Figure 16a), let us take two layers treinslated 
by a to vector which is tk for the two regions where 
B domains (noted Bl and B2) are superimposed. Then 
the superimposition of a C 2 domain over a BI 
domain (Figure 16b) constitutes a defect by displace­
ment of Al vacancies while, for example, a superimpo­
sition of a B2 domain over a C1 domain leads to 
a defect with simultaneously a displacement of Al 
vacancies and a h/3 translation (Figure 16c). 

One can see that, from twins, it becomes logical 
to describe the partially disordered kaolinites by a 
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model which contains, in addition to the random 
shifts, simultaneously displacement of Al vacancy de­
fects and h/3 translative defects. The case of such a 
model improves the fit. We give, in Figure 17, the 
example of kaolinites no. 2 and 3. Figure 17(a) corre­
sponds to the (02,11) profile of the kaolinite no. 2 
with the P proportion of random defects previously 
determined (P ~ 0.07), a I'Jd proportion of defects by 
displacement of Al vacancies of OA2 and a YJ, propor­
tion of ± h/3 translations of 0.06. We obtain a very 
good agreement between the experimental and theor­
etical profile, better than the fit obtained in taking 
into account only defects by displacement of Al 
vacancies. The same conclusion remains for · the kao­
linite no. 3 (Figure 17b) with P = 0.15, YJd = 0.30 and 
'1, = 0.12. 

CONCLUSION 

Until now, the different attempts to describe the 
defects of kaolinites were based on the ideas that (i) 
the hkl reflections with k = 3n are Bragg reflections 
not modified by any stacking fault, while (ii) the hkl 
reflections with k = 3n are affected by ± h/3 trans­
lations or ± 21[13 rotations. Practically, the authors 
who have studied the stackings have used only the 
concept of ± h/3 translations. 

With regard to this conception, our work provides 
several important precisions. 

(1) The h, 3n, I reflections are not broadened Bragg 
reflections but true continuous diffraction bands, 
more or less modulated. They can be explained by 
the existence, in the stackings, of random shifts of 
the layers parallel to the layer plane, associated with 
a modification of the basal spacings (existence of bub­
bles or folders). 

(2) The disordered kaolinites are customary classi­
fied as b-axis disordered minerals. On the contrary, 
our work leads us to consider that the defect which 
plays the main role is the displacement, from one 
layer to the other (or from one domain to another 
in the same layer), of the Al vacancies. In this concept, 
the h/3 translations are only secondary effects (in a 
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Figure 17. Final fit for experimental and calculated profiles of (02,11) band of kaolinite no. 2 and 
kaolinite no. 3 by using a model containing faults by displacement of Al vacancies and by ± b/ 3 
translation. (a) Kaolinite no. 2 (P = 0.07, I'Jd = 0.42, IJ, = 0.06, CM = 0), (b) kaolinite no. 3 (P = 0.15, 

I'Jd = 0.30, I'J, = 0.12, CM = 0.25). 
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small proportion) of the Al vacancies displacements. 
One should notice that such a model of faults by 
displacement of Al vacancies allows us to find, in the 
stacking, layers with the succession BC or CB, that 
is to say the 'birth of the dickite polytype'. 

(3) It is necessary to reject the stacking model con­
taining true rotations of real layers, because this de­
fect does not allow us to interpret all the different 
parts of the experimental diagrams. Now, the kao­
linite poly types are frequently described by the notion 
of rotation of layer. In the case of an idealization 
of the layer structure (without any deformation of 
tetrahedral and octahedral sheets), the notion of 
rotation of layers is identical to the notion of dis­
placement of Al vacancies. But, because an accurate 
description of polytypes requires the use of real layers, 
it is necessary to substitute the concept of displace­
.ment of Al vacancies to the notion of rotation of 
layers. 

Then this concept of defects in kaolinites is in 
agreement with the existence of poly types of kaolinite, 
and with the presence of twins in this mineral. It 
allows also to interpret some physico-chemical fea­
tures of these minerals such as the infrared spectra 
in the domain of the OH group vibration bands (Bar­
rios et al., 1977). 
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