Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T11:17:17.893Z Has data issue: false hasContentIssue false

Clay-Mineral Provenance, Sediment Dispersal Patterns, and Mudrock Diagenesis in the Nankai Accretionary Prism, Southwest Japan

Published online by Cambridge University Press:  28 February 2024

Michael B. Underwood
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri, 65211, U.S.A.
Kevin T. Pickering
Affiliation:
Department of Geological Sciences, University College London, Gower Street London, WC1E 6BT, U.K.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Offscraped strata within the toe of Nankai accretionary prism display an overall facies pattern of thickening and coarsening upward. Detrital clay minerals within the Quaternary trench-wedge facies are dominated by illite; chlorite is the second-most abundant clay mineral, followed by smectite. Relative mineral percentages change only modestly with depth. The hemipelagic clay-mineral population is virtually identical to clays washed from turbidite matrix, and different size fractions (<2 μm and 2–6 μm) show nominal amounts of mineral partitioning. Smectite content increases beneath the trench-wedge deposits, where the upper subunit of the Shikoku Basin stratigraphy (late Pliocene and early Pleistocene) includes abundance of volcanic ash. Syneruptive, subaerial chemical weathering of volcanic source rocks, together with in situ alteration of disseminated glass shards, caused the increase in smectite. Smectite begins a monotonic transformation to illite/smectite (I/S) mixed-layer clay at ~555 mbsf and an estimated temperature of ~65 °C. Ordered (R = 1) I/S interlayering first appears at ~1220 mbsf (<2 μm size fraction) and ~1100 mbsf (<0.2 μm size fraction). The illitization gradient coincides with a reduction in pore-water chlorinity, but depth-related changes in bulk mudstone geochemistry (K2O, Rb) are subtle. The absolute abundances of discrete smectite and I/S appear to be insufficient to account for the magnitude of pore-water dilution via in situ dehydration reactions. Instead, pore water probably was transported to Site 808, either from sources located deeper in the accretionary prism, where bulk mudstone porosities are lower, or from strike-parallel sources where mudstones originally deposited in the Shikoku Basin might contain higher percentages of smectite.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Ashi, J. and Taira, A.. 1993. Thermal structure of the Nankai accretionary prism as inferred from the distribution of gas hydrate BSRs. In: Underwood MB, editor, Thermal evolution of the Tertiary Shimanto Belt, Southwest Japan: An example of ridge-trench interaction. Geol Soc Am Spec Paper 273: 137149.Google Scholar
Bethke, C.M. and Altaner, S.P.. 1986. Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays & Clay Miner 34: 136145.CrossRefGoogle Scholar
Bethke, C.M., Vergo, N. and Altaner, S.P.. 1986. Pathways of smectite illitization. Clays & Clay Miner 34: 125135.CrossRefGoogle Scholar
Biscaye, P.E.. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76: 803831.CrossRefGoogle Scholar
Blake, M.C. Jr., Jayko, A.S. and McLaughlin, R.J.. 1985. Tectono-stratigraphic terranes of the northern Coast Ranges, California. In: Howell, D.G., editor. Tectonostratigraphic terranes of the Circum-Pacific Region, Circum-Pacific Council for Energy & Min. Res. Earth Sci Series 1: 159172.Google Scholar
Boggs, S. Jr. 1984. Quaternary sedimentation in the Japan arc-trench system. Geol Soc Am Bull 95: 669685.2.0.CO;2>CrossRefGoogle Scholar
Bruce, C.H.. 1984. Smectite dehydration—its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico basin. Am Assoc Pet Geol Bull 68: 673683.Google Scholar
Burst, J.F.. 1969. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. Am Assoc Pet Geol Bull 53: 7393.Google Scholar
Cadet, J.-P., Kobayashi, K., Aubouin, J., Boulegue, J., Deplus, C., Dulsais, J., von Huene, R., Jolivet, L., Kanazawa, T., Kasahara, J., Koizumi, K., Lallemand, S., Nakamura, Y., Pautot, G., Suyehiro, K., Tani, S., Tokuyama, H. and Yamazaki, T.. 1987. The Japan Trench and its juncture with the Kuril Trench: Cruise results of the Kaiko project, Leg 3. Earth & Planet Sci Lett 83: 267284.CrossRefGoogle Scholar
Chamley, H.. 1980. Clay sedimentation and paleoenvironment in the Shikoku Basin since the middle Miocene (Deep Sea Drilling Project Leg 58, North Philippine Sea). In: Klein Gde, V., Kobayashi, J.W., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 58: 669681.Google Scholar
Chamley, H., Cadet, J.-P. and Charvet, J.. 1986. Nankai Trough and Japan Trench late Cenozoic paleoenvironments deduced from clay mineralogy data. In: Kagami, H., Karig, D.E., Coulbourn, W.T., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 87: 633642.Google Scholar
Chamot-Rooke, N., Renard, V. and Le Pichon, X.. 1987. Magnetic anomalies in the Shikoku Basin: A new interpretation. Earth & Planet Sci Lett 83: 214228.CrossRefGoogle Scholar
Colten-Bradley, V.A.. 1987. Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transformation. Am Assoc Pet Geol Bull 71: 14141427.Google Scholar
Cook, H.E., Zemmels, I. and Matti, J.C.. 1975. X-ray mineralogy data, far western Pacific, Leg 31 Deep Sea Drilling Project. In: Karig, D.E., Ingle, J.C. Jr., et al., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 31: 883895.Google Scholar
Coulbourn, W.T.. 1986. Sedimentologic summary, Nankai Trough Sites 582 and 583, and Japan Trench Site 584. In: Kagami, H., Karig, D.E., Coulbourn, W.T., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office, 87: 909926.Google Scholar
De Rosa, R., Zuffa, G.G., Taira, A. and Leggett, J.K.. 1986. Petrography of trench sands from the Nankai Trough, southwest Japan: Implications for long-distance turbidite transportation. Geol Mag 123: 477486.CrossRefGoogle Scholar
Donnelly, T.W.. 1980. Chemical composition of deep sea sediments—Sites 9 through 425, Legs 2 through 54. In: Rosendahl, B.R., Hekinian, R., et al., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 54: 899949.Google Scholar
Dypvik, H.. 1983. Clay mineral transformations in Tertiary and Mesozoic sediments from North Sea. Am Assoc Pet Geol Bull 67: 160165.Google Scholar
Eberl, D.D.. 1978. The reaction of montmorillonite to mixed-layer clay: The effect of interlayer alkali and alkaline earth cations. Geochim Cosmochim Acta 42: 17.CrossRefGoogle Scholar
Eberl, D. and Hower, J.. 1976. Kinetics of illite formation. Geol Soc Am Bull 87: 13261330.2.0.CO;2>CrossRefGoogle Scholar
Freed, R.L. and Peacor, D.R.. 1989a. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner 24: 171180.CrossRefGoogle Scholar
Freed, R.L. and Peacor, D.R.. 1989b. Geopressured shale and sealing effect of smectite to illite transition. Am Assoc Pet Geol Bull 73: 12231232.Google Scholar
Gieskes, J.M., Gamo, T. and Kastner, M.. 1993. Major and minor element geochemistry of interstitial waters of Site 808, Nankai Trough: An overview. In: Hill, I.A., Taira, A., Firth, J.V., et al. editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 387396.Google Scholar
Gorsline, D.S.. 1984. A review of fine-grained sediment origins, characteristics, transport and deposition. In: Stow, D.A.V., Piper, D.J.W., editors. Fine-grained sediments: Deep water processes and facies. Oxford: Blackwell Sci Publ. p 1734.Google Scholar
Gorsline, D.S.. 1985. Some thoughts on fine-grained sediment transport and deposition. Sed Geol 41: 113130.CrossRefGoogle Scholar
Hansen, P.L. and Lindgreen, H.. 1989. Mixed-layer illite/smectite diagenesis in Upper Jurassic claystones from the North Sea and onshore Denmark. Clay Miner 24: 197213.CrossRefGoogle Scholar
Hathon, E.G.. 1992. X-ray diffraction and transmission electron microscopy study of the surface charge on the illite and smectite components of illite/smectite mixed-layer clays. [unpublished Ph.D. Dissertation]. Columbia: University of Missouri. 215 p.Google Scholar
Hathon, E.G. and Underwood, M.B.. 1991. Clay mineralogy and chemistry as indicators of hemipelagic sediment dispersal south of the Aleutian arc. Marine Geol 97: 145166.CrossRefGoogle Scholar
Hibbard, J.P. and Karig, D.E.. 1990. Alternative plate model for the Early Miocene evolution of the SW Japan margin. Geology 18: 170174.2.3.CO;2>CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A.. 1976. Mechanism of burial metamorphism of argillaceous sediment: 1. mineralogical and chemical evidence. Geol Soc Am Bull 87: 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.-L., Longo, J.M. and Pevear, D.R.. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays & Clay Miner 41: 162177.CrossRefGoogle Scholar
Inoue, A., Bouchet, A., Velde, B. and Meunier, A.. 1989. Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays & Clay Miner 37: 227234.CrossRefGoogle Scholar
Jennings, S. and Thompson, G.R.. 1986. Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California. J Sed Pet 56: 8998.Google Scholar
Kagami, H., Karig, D.E., Coulbourn, W.T., Bray, C.J. and Charvet, J.. 1986. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 87: 985.Google Scholar
Karig, D.E., Ingle, J.C. Jr., Haile, N., Bouma, A.H., Moore, J.C., White, S.M., MacGregor, I., Ellis, H., Ujiie, H., Ling, H.Y., Koizumi, I., Watanabe, T. and Yasui, M.. 1975. In: Karig, D.E., Ingle, J.C. Jr, editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 31: 927.Google Scholar
Kastner, M., Elderfield, H., Jenkins, W.J., Gieskes, J.M. and Gamo, T.. 1993. Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results. Ocean Drilling Program, College Station. 131: 397416.Google Scholar
Kawahata, H., Fujioka, K. and Ishizuka, T.. 1986. Sediments and interstitial water at Sites 582 and 584, the Nankai Trough and the Japan Trench landward slope. In: Kagami, H., Karig, D.E., Coulbourn, W.T., et al., editors. Init. Repts. DSDP. Washington, D.C.: U.S. Govt. Printing Office. 87: 865875.Google Scholar
Klein, G deV, Kobayashi, J.W., Chamley, H., Curtis, D., Dick, H., Echols, D.J., Fountain, D.M., Kinoshite, H., March, N.G., Mizuno, A., Nisterenko, G.V., Okada, H., Sloan, J.R., Waples, D. and White, S.M.. 1980. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 58: 1022 p.Google Scholar
Le Pichon, X., Iiyama, T., Chamley, H., Charvet, J., Faure, M., Fujimoto, H., Furuta, T., Ida, Y., Kagami, H., Lallemant, S., Leggett, J., Murata, A., Okada, H., Rangin, C., Renard, V., Taira, A. and Tokuyama, H.. 1987a. Nankai Trough and the fossil Shikoku Ridge: Results of Box 6 Kaiko survey. Earth & Planet Sci Lett 83: 186198.CrossRefGoogle Scholar
Le Pichon, X., Iiyama, T., Chamley, H., Charvet, J., Faure, M., Fujimoto, H., Furuta, T., Ida, Y., Kagami, H., Lallemant, S., Leggett, J., Murata, A., Okada, H., Rangin, C., Renard, V., Taira, A. and Tokuyama, H.. 1987b. The eastern and western ends of Nankai Trough: Results of Box 5 and Box 7 Kaiko survey. Earth & Planet Sci Lett 83: 199213.CrossRefGoogle Scholar
Marsaglia, K.M., Ingersoll, R.V. and Packer, B.M.. 1992. Tectonic evolution of the Japanese Islands as reflected in modal compositions of Cenozoic forearc and backarc sand and sandstone. Tectonics 11: 10281044.CrossRefGoogle Scholar
Masuda, H., Tanaka, H., Gamo, T., Soh, W. and Taira, A.. 1993. Major-element chemistry and alteration mineralogy of volcanic ash. Site 808 in the Nankai Trough. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 175184.Google Scholar
McManus, D.A.. 1991. Suggestions for authors whose manuscripts include quantitative clay mineral analysis by X-ray diffraction. Mar Geol 98: 15.CrossRefGoogle Scholar
Minai, Y., Matsumoto, R. and Tominaga, T.. 1986. Geochemistry of deep sea sediments from the Nankai Trough, the Japan Trench, and adjacent regions. In: Kagami, H., Karig, D.E., Coulbourn, W.T., et al., editors. Init. Repts. DSDP Washington, D.C.: U.S. Govt. Printing Office. 87: 643657.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press. 332 p.Google Scholar
Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H. and Suyehiro, K.. 1990. Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data. J Geophys Res 95: 87538765.CrossRefGoogle Scholar
Moore, J.C.. 1989. Tectonics and hydrogeology of accretionary prisms: Role of the décollement zone. J Struc Geol 11: 95106.CrossRefGoogle Scholar
Moore, J.C. and Karig, D.E.. 1976. Sedimentology, structural geology, and tectonics of the Shikoku subduction zone, southwestern Japan. Geol Soc Am Bull 87: 12591268.2.0.CO;2>CrossRefGoogle Scholar
Moore, J.C., Byrne, T., Plumley, P.W., Reid, M., Gibbons, H. and Coe, R.S.. 1983. Paleogene evolution of the Kodiak Islands, Alaska: Consequences of ridge-trench interaction in a more southerly latitude. Tectonics 2: 265293.CrossRefGoogle Scholar
Moore, J.C., Mascle, A., Taylor, E., Andreieff, P., Alvarez, F., Barnes, R., Beck, C., Behrmann, J., Blanc, G., Brown, K., Clark, M., Dolan, J., Fisher, A., Gieskes, J., Hounslow, M., McLellan, P., Moran, K., Ogawa, Y., Sakai, T., Schoonmaker, J., Vrolijk, P., Wilkens, R. and Williams, G.. 1988. Tectonics and hydrogeology of the northern Barbados Ridge: Results from Ocean Drilling Program Leg 110. Geol Soc Am Bull 100: 15781593.2.3.CO;2>CrossRefGoogle Scholar
Moore, J.C. and Vrolijk, P.. 1992. Fluids in accretionary prisms. Rev Geophys 30: 113135.CrossRefGoogle Scholar
Nakamura, K., Renard, V., Angelier, J., Azema, J., Bourgois, J., Deplus, C., Fujioka, K., Hamano, Y., Huchon, P., Kinoshita, H., Labaume, P., Ogawa, Y., Seno, T., Takeuchi, A., Tanahashi, M., Uchiyama, A. and Vigneresse, J.-L.. 1987. Oblique and near collision subduction, Sagami and Suruga Troughs—preliminary results of the French-Japanese 1984 Kaiko cruise, Leg 2. Earth & Planet Sci Lett 83: 229242.CrossRefGoogle Scholar
Oba, N.. 1977. Emplacement of granitic rocks in the Outer Zone of southwest Japan and geological significance. J Geol 85: 383393.CrossRefGoogle Scholar
Ogawa, Y., Horiuchi, K., Taniguchi, H. and Naka, J.. 1985. Collision of the Izu arc with Honshu and the effects of oblique subduction in the Miura-Boso Peninsulas. Tectonophysics 119: 349379.CrossRefGoogle Scholar
Ogawa, Y. and Taniguchi, H.. 1988. Geology and tectonics of the Miura-Boso Peninsulas and the adjacent area. Modern Geol 12: 147168.Google Scholar
Okuda, Y. and Honza, E.. 1988. Tectonic evolution of the Seinan (SW) Japan fore-arc and accretion in the Nankai Trough. Modern Geol 12: 411434.Google Scholar
Perry, E. and Hower, J.. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays & Clay Miner 18: 165177.CrossRefGoogle Scholar
Pickering, K.T., Underwood, M.B. and Taira, A.. 1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: Flow collapse and reflection. Geology 20: 10991102.2.3.CO;2>CrossRefGoogle Scholar
Pickering, K.T., Underwood, M.B. and Taira, A.. 1993a. Stratigraphic synthesis of the DSDP-ODP sites in the Shikoku Basin, Nankai Trough, and accretionary prism. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 313330.Google Scholar
Pickering, K.T., Marsh, N.G. and Dickie, B.. 1993b. Data Report: Inorganic major, trace, and rare earth element analyses of the muds and mudstones from Site 808. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 427450.Google Scholar
Piper, D.J.W., von Huene, R. and Duncan, J.R.. 1973. Late Quaternary sedimentation in the active eastern Aleutian Trench. Geology 1: 1922.2.0.CO;2>CrossRefGoogle Scholar
Pouclet, A., Fujioka, K., Charvet, J. and Cadet, J.-P.. 1986. Petrography and geochemistry of volcanic ash layers from Leg 87A, Nankai Trough (south Japan). In: Kagami, H., Karig, D.E., Coulbourn, W.T., et al., editors. Init. Repts. DSDP. Washington, D.C.: U.S. Govt. Printing Office. 87: 695701.Google Scholar
Pytte, A.M. and Reynolds, R.C.. 1989. The thermal transformation of smectite to illite. In: Naeser, N.D., McCulloh, T.H., editors. Thermal history of sedimentary basins. New York: Springer-Verlag. p 133140.CrossRefGoogle Scholar
Ramseyer, K. and Boles, J.R.. 1986. Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays & Clay Miner 34: 115124.CrossRefGoogle Scholar
Reynolds, R.C. Jr. and Hower, J.. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays & Clay Miner 18: 2536.CrossRefGoogle Scholar
Roberson, H.E. and Lahann, R.W.. 1981. Smectite to illite conversion rates: Effects of solution chemistry. Clays & Clay Miner 29: 129135.CrossRefGoogle Scholar
Schweller, W.J. and Kulm, L.D.. 1978. Depositional patterns and channelized sedimentation in active eastern Pacific trenches. In: Stanley, D.J., Kelling, G., editors. Sedimentation in submarine canyons, fans, and trenches. Stroudsburg: Dowden, Hutchinson, and Ross. p 323350.Google Scholar
Schoonmaker, J., Mackenzie, F.T. and Speed, R.C.. 1986. Tectonic implications of illite/smectite diagenesis, Barbados accretionary prism. Clays & Clay Miner 34: 465472.CrossRefGoogle Scholar
Shibata, K. and Ishihara, S.. 1979. Initial 87Sr/86Sr ratios of plutonic rocks from Japan. Contrib Mineral Petrol 70: 381390.CrossRefGoogle Scholar
Shimamura, K.. 1989. Topography and sedimentary facies of the Nankai deep sea channel. In: Taira, A., Masuda, F., editors. Sedimentary facies in the active plate margin. Tokyo: Terra Sci Publ Co. p 529556.Google Scholar
Shipboard Scientific Party. 1991. Site 808. In: Taira, A., Hill, I., Firth, J., et al. editors. Proc. ODP, Initial Results Ocean Drilling Program, College Station. 131: 71269.Google Scholar
Soh, W., Pickering, K.T., Taira, A. and Tokuyama, H.. 1991. Basin evolution in the arc-arc Izu Collision Zone, Mio-Pliocene, Miura Group, central Japan. J Geol Soc London 148: 317330.CrossRefGoogle Scholar
Srodon, J.. 1980. Precise identification of illite/smectite inter-stratifications by X-ray powder diffraction. Clays & Clay Miner 28: 401411.CrossRefGoogle Scholar
Srodon, J.. 1981. X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite. Clay Miner 16: 297304.CrossRefGoogle Scholar
Starkey, H.C., Blackmon, P.D. and Hauff, P.C.. 1984. The routine mineralogical analysis of clay bearing samples. U.S. Geol Surv Bull 1563: 132.Google Scholar
Taira, A. and Niitsuma, N.. 1986. Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size, and detrital modal analyses. In: Kagami, H., Karig, D.E., Coulbourn, W.T., et al., editors. Init. Repts. DSDP. Washington, D.C.: U.S. Govt. Printing Office. 87: 611632.Google Scholar
Taira, A., Hill, I., Firth, J., Berner, U., Bruckmann, W., Byrne, T., Chabernaud, T., Fisher, A., Foucher, J.-P., Gamo, T., Gieskes, J., Hyndman, R., Karig, D., Kastner, M., Kato, Y., Lallemant, S., Lu, R., Maltman, A., Moore, G., Moran, K., Olaffson, G., Owens, W., Pickering, K., Siena, F., Taylor, E., Underwood, M., Wilkinson, C., Yamano, M. and Zhang, J.. 1992. Proc. ODP, Initial Reports Ocean Drilling Program, College Station. 131: 434 p.Google Scholar
Taira, A., et al. 1992. Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: Synthesis of shipboard results of ODP Leg 131. Earth & Planet Sci Lett 109: 431450.CrossRefGoogle Scholar
Taira, A., Katto, J., Tashiro, M., Okamura, M. and Kodama, K.. 1988. The Shimanto Belt in Shikoku, Japan: Evolution of cretaceous to Miocene accretionary prism. Mod Geol 12: 546.Google Scholar
Terakado, Y., Shimizu, H. and Masuda, A.. 1988. Nd and Sr isotopic variations in acidic rocks formed under a pecular tectonic environment in Miocene SW Japan. Contrib Mineral Petrol 99: 110.CrossRefGoogle Scholar
Toriumi, M. and Arai, T. 1989. Metamorphism of the Izu-Tanzawa collision zone. Tectonophysics 160: 293303.CrossRefGoogle Scholar
Tribble, J.S.. 1990. Clay diagenesis in the Barbados accretionary complex: Potential impact on hydrology and subduction dynamics. In: Moore, J.C., Mascle, A., Taylor, E., Underwood, M.B., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 110: 97110.Google Scholar
Underwood, M.B.. 1986. Transverse infilling of the central Aleutian Trench by unconfined turbidity currents. Geo-Mar Lett 6: 713.CrossRefGoogle Scholar
Underwood, M.B.. 1991. Submarine canyons, unconfined turbidity currents, and sedimentary bypassing of forearc regions. Rev Aquatic Sci 4: 149200.Google Scholar
Underwood, M.B. and Norville, C.. 1986. Deposition of sand in a trench-slope basin by unconfined turbidity currents. Mar Geol 71: 383392.CrossRefGoogle Scholar
Underwood, M.B., Orr, R., Pickering, K. and Taira, A.. 1993a. Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 1534.Google Scholar
Underwood, M.B., Pickering, K., Gieskes, J.M., Kastner, M. and Orr, R.. 1993b. Sediment geochemistry, clay mineralogy, and diagenesis: A synthesis of data from Leg 131, Nankai Trough. In: Hill, I.A., Taira, A., Firth, J.V., et al., editors. Proc. ODP, Sci. Results Ocean Drilling Program, College Station. 131: 343363.Google Scholar
Velde, B. and Iijima, A.. 1988. Comparison of clay and zeolite mineral occurrences in Neogene age sediments from several deep wells. Clays & Clay Miner 36: 337342.CrossRefGoogle Scholar
Velde, B. and Espitalie, J.. 1989. Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12: 103110.CrossRefGoogle Scholar
Velde, B., Suzuki, T. and Nicot, E.. 1986. Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger Delta mudstones and other examples. Clays & Clay Miner 34: 435441.CrossRefGoogle Scholar
von Huene, R. and Arthur, M.A.. 1982. Sedimentation across the Japan Trench off northern Honshu Island. In: Leggett, J.K., editor. Trench-forearc geology. Geol Soc London Spec Publ 10: 2748.Google Scholar
Vrolijk, P.. 1990. On the mechanical role of smectite in subduction zones. Geology 18: 703707.2.3.CO;2>CrossRefGoogle Scholar
Vrolijk, P., Fisher, A. and Gieskes, J.. 1991. Geochemical and geo-thermal evidence for fluid migration in the Barbados accretionary prism (ODP Leg 110). Geophys Res Lett 18: 947950.CrossRefGoogle Scholar
Walker, J.R. and Thompson, G.R.. 1990. Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California. Clays & Clay Miner 38: 315321.CrossRefGoogle Scholar
Whitney, G.. 1990. Role of water in the smectite-to-illite reaction. Clays & Clay Miner 38: 343350.CrossRefGoogle Scholar
Yamano, M., Uyeda, S., Aoki, Y. and Shipley, T.H.. 1982. Estimates of heat flow derived from gas hydrates. Geology 10: 339343.2.0.CO;2>CrossRefGoogle Scholar
Yamano, M., Honda, S. and Uyeda, S.. 1984. Nankai Trough: A hot trench? Mar Geophys Res 6: 187203.CrossRefGoogle Scholar
Yamano, M., Foucher, J.-P., Kinoshita, M., Fisher, A. and Hyndman, R.D.. ODP Leg 131 Shipboard Scientific Party. 1992. Heat flow and fluid flow regime in the western Nankai accretionary prism. Earth & Planet Sci Lett 109: 451462.CrossRefGoogle Scholar
Yau, Y.-C., Peacor, D.R. and McDowell, S.D.. 1987. Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study. J Sed Pet 57: 335342.Google Scholar