Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T07:30:02.813Z Has data issue: false hasContentIssue false

Fibrous clays in the Almazan Basin (Iberian Range, Spain): genetic pattern in a calcareous lacustrine environment

Published online by Cambridge University Press:  09 July 2018

F. Lopez-Aguayo
Affiliation:
Dpto. Cristalograftía y Mineralogía, Estratigrafía, Geodinàmica y Petrología y Geoquímica, Facultad Ciencias del Mar. Universidad de Cádiz, Apdo. 40, 11510 Puerto Real, Cádiz, Spain
J. M. Gonzalez Lopez
Affiliation:
Dpto. Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, Plz. S. Francisco, s/n 50009 Zaragoza, Spain

Abstract

The Tertiary sediments of the southern part of Almazán basin (Province of Soria) exhibit two different facies with a sharp transition between them: (1) a coarse detrital facies; and (2) a lutite and carbonate facies. The vertical evolution of these facies in the different sections and boreholes is made up of several retrograde depositional sequences which evolve from proximal alluvial fans to carbonate lacustrine systems associated with the most distal fan sediments.

The variation of the mineralogical association (carbonates, quartz, detrital clay minerals, palygorskite and, occasionally, sepiolite and smectites) allows four ‘mineralogical facies’ to be established. Each facies has a distinctive mineralogy related to the main genetic processes: (1) detrital facies; (2) transitional facies; (3) ‘chemical dolomite-palygorskite’ facies and (4) ‘chemical calcite’ facies. Although the carbonates (calcite and dolomite) are always the most abundant minerals, fibrous clay minerals are also important. The main mechanism of mineral authigenesis in this basin is chemical precipitation; the presence and distribution of carbonates and fibrous clay minerals is controlled by the relative concentrations of [Mg2+], [Ca2+], pCO2, pH and [SiO4H4]. Palygorskite occurrences, in these conditions, are related to dissolution-precipitation mechanisms of pre-existing detrital material.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E. (1974) Arcillas de ladriUeria de la provincia de Granada: evaluación de algunos ensayos de materias primas. Tesis Doctoral., Univ. Granada, Spain.Google Scholar
Crtahi, A., Duplay, J. & Lucas, J. (1993) Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): chemical characteristics and origin of formation. Clays Clay Miner. 41, 401–411.Google Scholar
Darragi, F. & Tardy, Y. (1987) Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes. Chem. Geol. 63, 5972.CrossRefGoogle Scholar
Davis, J.C. (1973) Statistical and Data Analysis in Geology. Wiley and Sons, New York.Google Scholar
GaláN, E. & Castillo, A. (1984) Sepiolite-palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp. 87–125 in: Palygorskite- sepiolite, Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Elsevier, Amsterdam.Google Scholar
GaláN, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, southern Spain. Clays Clay Miner. 30, 191199.CrossRefGoogle Scholar
Greene-Kelly, R. (1953) Identification of montmorillonoids. J. Soil Sci. 4, 233237.Google Scholar
Imbrie, J. & Van Andel, T.H. (1964) Vector analysis of heavy-mineral data. Bull. Geol. Soc. Am. 75, 11311156.Google Scholar
Jones, B.F. & GaláN, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates. (Bailey, S.W., editor) Reviews in Mineralogy, 16, Mineralogical Society of America, Washington.Google Scholar
Joreskog, K.G., Klovan, J.E. & Reyment, R.A. (1976) Geological Factor Analysis. Elsevier, Amsterdam.Google Scholar
Kubler, B. (1968) Evaluation quantitative du metamorphisme para la cristallinitá de l'illite. Bull. Centre Rech. Pau-SNPA. 2, 385397.Google Scholar
Lopez-Acoayo, F. & Gonzalez Lopez, J.M. (1992) The Almazán Basin: model of chemical and mineralogical evolution. (Factorial analysis). Miner. Petrogr. Acta. 35, 99104.Google Scholar
Miesch, A.T. (I976) Q-mode factor analysis of compositional data. Computer and Geosciences. 1, 147–159.Google Scholar
Nesbrrr, H.W. (1974) Mineralogy and geochemistry of the Basque Lakes, British Columbia. PhD dissert., Johns Hopkins Univ., Baltimore, USA.Google Scholar
Sanchez de la Torre, L. (1963) E1 borde Mioceno en Arcos de Jal6n. Estudios Geol. 19, 109136.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. GeoL Surv. Prof Paper 391-C, 1-31.Google Scholar
Torres-Ruiz, J., Lopez-Galindo, A., Gonzalez-Lopez, J.M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chem. Geol. 112, 221245.CrossRefGoogle Scholar
Velde, B. (1985) Clay Minerals: A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40. Elsevier, New York.Google Scholar
Zussman, J. (1979) The crystal chemistry of the micas. Bull. Mineral. 102, 513.Google Scholar