Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:25:27.088Z Has data issue: false hasContentIssue false

Diversity of smectite origins in Late Cretaceous sediments: example of chalks from northern france

Published online by Cambridge University Press:  09 July 2018

J. F. Deconinck
Affiliation:
Sédimentologie et Géodynamique, U.R.A. 719 C.N.R.S., Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
H. Chamley
Affiliation:
Sédimentologie et Géodynamique, U.R.A. 719 C.N.R.S., Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France

Abstract

According to XRD, DTA, geochemistry and electron microscopy data of a few selected samples, three categories of smectitic clay minerals occur in the Cenomanian and Turonian chalks sampled in several sections of northern France. The first one corresponds to detrital illitesmectite mixed-layers reworked from pedogenic blankets. The second category, characterized by crystalline overgrowths around detrital particles, is especially well-developed in slowly deposited sediments. The third category, located in thin marly horizons, corresponds to Cheto-montmorillonite derived from the submarine alteration of volcanic glass. Smectitic minerals having distinct origins may therefore occur at different levels of a given formation. From these examples, the smectite-rich clay sedimentation of the Late Cretaceous is tentatively explained by the combination of favourable factors induced mainly by highstand of the sea-level. The climatic conditions, the reduction of continental areas, the development of carbonate platforms and the decrease in sedimentation rates constitute the most relevant of these factors.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adatte, T. & Rumley, G. (1984) Microfaciès, minéralogie, stratigraphie et évolution des milieux de dépots de la plate-forme berriaso-valanginienne des régions de Sainte-Croix (VD), Cressier et du Landeron (NE). Bull. Soc. Nauchateloise Sci. Nat. 107, 221239.Google Scholar
Amedro, F. (1986) Biostratigraphie des craies du Boulonnais par les ammonites. Ann. Soc. géol. Nord, Lille, CV, 159-167.Google Scholar
Amedro, F. & Robaszynski, F. (1978) Peroniceras, faunes et microfaunes associées dans le Nord de la France. Comparaison de quelques sections dans le Turonien-Coniacien. Ann. Soc. gdol. Nord Lille, XCVIII, 35-50.Google Scholar
Bergerat, F. & Vandycke, S. (1994) Palaeostress analysis and geodynamical implications of Cretaceous- Tertiary faulting in Kent and the Boulonnais. J. geol. Soc. 151, 439448.CrossRefGoogle Scholar
Berner, R.A., Lasaga, A.C. & Garrels, R.M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 millions years. Am. J. Sci. 283, 641683.Google Scholar
Bouquillon, A. & Chamley, H. (1986) Sédimentation et diagenèse récentes dans l'éventail marin profond du Gange (Océan Indien). C. R. Acad. Sci. 303, 14611466.Google Scholar
Bouquillon, A., Chamley, H. & Frohlich, F. (1989) Sédimentation argileuse au Cénozoique supérieur dans l'Océan Indien Nord-Oriental. Oceanologica Acta, 12/3, 133147.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray procedures for clay mineral identification. Pp. 305-359 in: Crystal Structures of Clay minerals and their X- Identification. (Brindley, G.W. & G. Brown, editors.) Mineralogical Society, London.Google Scholar
Chamley, H. (1979) North-Atlantic clay sedimentation and palaeoenvironment since the Late Jurassic. Deep Drilling results in the Atlantic ocean: continental margins and paleoenvironment. Pp. 342–361 in” Maurice Ewing series, 3 (Talwani, M. et al., editors). American Geophysical Union.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag. Berlin, 623 pp.CrossRefGoogle Scholar
Chamley, H., Deconinck, J.F. & Millot, G. (1990) Sur l'abondance des minéraux smectitiques dans les sédiments marins communs déposés lors des périodes de haut niveau marin du Jurassique supérieur au Paléogène. C.R. Acad. Sci. 311, 15291536.Google Scholar
Chantret, F., Desprairies, A., Douillet, P., Jacob, C., STEINBERG M, & Trauth, N. (1971) Révision critique de l'utilisation des méthodes thermiques en sédimentologie: cas des smectites (montmorillonites). Bull. groupe Franc. Argiles, 23, 141–172.Google Scholar
Cope, J.C.W., INGHAM J,K. & Rawson, F. (1992) Atlas of Palaeogeography and Lithofacies. Geological Society of London, Memoir 13.Google Scholar
Debrabant, P., Chamley, H., Deconinck, J.F., Recourt, P. & Trouiller, A. (1992). Clay sedimentology, mineralogy and chemistry of Mesozoic sediments drilled in the Northern Paris Basin. Scientific Drilling, 3, 138152.Google Scholar
Decommer, H. & Chamley, H. (1981) Environnements mésozoiques du Nord de la France, d'après les données des argiles et du palynoplancton. C. R. Acad. Sci. 293, 695698.Google Scholar
Deconinck, J.F. (1992) Sédimentologie des argiles dans le Jurassique-Crétacé d'Europe occidentale et du Maroc. Mémoire d'habilitation a diriger des recherches, Univ. Lille., 249 pp.Google Scholar
Deconinck, J.F., AméDRO, F., Desprairies, A., Juignet, P. & Robaszynski, F. (1991a) Niveaux repéres de bentonites d'origine volcanique dans les craies du Turonien supérieur du Boulonnais et de Haute- Normandie. C.R. Acad. Sci. 312, 897903.Google Scholar
Deconinck, J.F., AméDRO, F., Fiolet-Piette, A., Juignet, P., Renard, M. & Robaszynski, F. (1991). Controle paléogéographique de la sédimentation argileuse dans le Cénomanien du Boulonnais et du Pays de Caux. Ann. Soc. géol. Nord. 1, 57–66.Google Scholar
Deconinck, J.F., Holtzapffel, T., Robaszynski, F. & Amedro, F. (1989) Données minéralogiques, géochimiques et biologiques comparées dans les craies cénomaniennes a santoniennes du Boulonnais. Geobios, 11, 179188.CrossRefGoogle Scholar
Haq, B.U., Hardenbol, J. & Vail, P. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 11561167.Google Scholar
Heim, D. (1957) Uber die mineralischen, nicht karbonatischen Bestandtelle des Cenoman und Turon der mitteldeutschen Kreidemulden und ihre Verteilung. Heidelberger Beitréige zur Min. u. Pel. 5, 302, 330.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux: Préparation, analyse diffractométrique et détermination. Soc. géol. Nord Publ. 12, 136 pp.Google Scholar
Holtzapffel, T., Bonnot-Courtois, C., Chamley, H. & Clauer, N. (1985) Héritage et diagenèse de smectites du domaine sédimentaire nord-atlantique (Crétacé- Paléogène). Bull. Soc. géol. Fr. 8, 2332.Google Scholar
Holtzapffel, T. & Chamley, H. (1986) Les smectites lattées du domaine atlantique depuis le Jurassique supérieur: gisement et signification. Clay Miner. 21, 133148.Google Scholar
Inoue, A., Bouchet, A., Velde, B. & Meunier, A. (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified itlite/smectite minerals. Clays Clay Miner. 37, 227234.Google Scholar
Jeans, C.V. (1968). The origin of the montmorillonite of the European chalk with special reference to the Lower Chalk of England. Clay Miner. 7, 311329.CrossRefGoogle Scholar
Jeans, C.V. (1978). Silicifications and associated clay assemblages in the Cretaceous marine sediments of southern England. Clay Miner. 13, 101126.Google Scholar
Jeans, C.V., Merriman, R.J., Mitchell, J.G. & Bland, D.J. (1982) Volcanic clays in the Cretaceous of Southern England and Northern Ireland. Clay Miner. 17, 105156.CrossRefGoogle Scholar
Juignet, P. (1974) La transgression crétacée sur la bordure orientale du Massif Armoricain. Aptien, Albien, Cénomanien de Normandie et du Maine. Le stratotype du Cénomanien. Thèse Etat, Univ. Caen, 810 pp.Google Scholar
Juignet, P. & Kennsdy, W.J. (1976) Faunes d'ammonites et biostratigraphie comparée du Cénomanien du Nord-Ouest de la France (Normandie) et du Sud de l'Angleterre. Bull. trim. soc. géol. Normandie, LXII/2, 193 pp.Google Scholar
Juignet, P. & Pomerol, B. (1975) La clinoptilolite dans le Crétacé supérieur du Bassin de Paris. Bull inf. géol. Bass. 12/2, 2534.Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: formation and diagenesis. Pp. 915–980 in: The Sea, (Emiliani, C., editor) Wiley & Sons, New York, 7.Google Scholar
Ktmblin, R.T. (1992) The origin of clay minerals in the Coniacian Chalk of London. Clay Miner. 27, 389-392.Google Scholar
Lever, A. & Mccaw, I.N. (1983) Eolian components in Cretaceous and Tertiary North Atlantic sediments. J. Sed. Pet. 53, 811832.Google Scholar
Louail, J. (1979) Origine et signification des zéolites dans les dépéts cénomaniens de la bordure Sud-Est du Massif Armoricain. Clay Miner. 14, 67–85.Google Scholar
Millot, G., Camez, T. & Bonte, A. (1957) Sur la montmorillonite dans les craies. Bull. Serv. Carte gdol. Als-Lorr., 10/2, 2526.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 332 pp.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1–128 in: Chemistry of Clays and Clay Minerals. (Newman, A.C.D., editor), Mineralogical Society, Monograph 6.Google Scholar
Pacey, N.R. (1984) Bentonites in the chalk of central eastern England and their relation to the opening of the northeast Atlantic. Earth Planet. Sci. Lett. 67, 4860.Google Scholar
Paterson, E. & Swaffield, R. (1987) Thermal analysis. Pp. 99-132 in: A Handbook of Determinative Methods in Clay Mineralogy. (Wilson, M.J., editor) Blackie, Glasgow.Google Scholar
Pitman, W.C. III (1978) Relationship between eustatic and stratigraphic sequences of passive margins. Geol. Soc. Am. Bull. 89, 13891403.Google Scholar
Pomerol, B. (1984) Géochimie des craies du Bassin de Paris. Utilisation des éléments-traces et des isotopes stables du carbone et de l'oxygéne en sédimentologie et en paléo-océanographie. Mém. Sc. Terre Univ. P. & M. Curie, 84-21, 531 pp.Google Scholar
Pomerol, B. & Aubry, M.P. (1977) Relation between western european chalks and opening of the North Atlantic. J. Sed. Pet. 47, 10271035.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors) Mineralogical Society, London.Google Scholar
Robaszynski, F. & Amedro, F. (1986) The Cretaceous of the Boulonnais (France) and a comparison with the Cretaceous of Kent (United Kingdom). Proc. Geol. Ass. 97, 171208,Google Scholar
Robaszynski, F. & Amedro, F. (coord.) & Foucher, J. C., Gaspard, O., Magniez-Jannin, F., Manivit, H. & Sornay, J. (1980) Synthèse biostratigraphique de l'Aptien au Santonien du Boulonnais a partir de sept groupes paléontologiques: Foraminifères, Nannoplancton, dinoflagellés et macrofaunes. Rev. Micropal. 22, 195321.Google Scholar
Sheridan, R.E. (1987) Pulsation tectonics as the control of long-term stratigraphic cycles. Paleoceanography 2/2, 97-118.CrossRefGoogle Scholar
Steinberg, M., Holtzapffel, T. & Ralrrureau, M. (1987) Characterization of overgrowth structures formed around individual clay particles during early diagenesis. Clays Clay Miner. 35, 189195.CrossRefGoogle Scholar
Thiry, M. & Jacquin, T. (1993) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic ocean. Clay Miner. 28, 6184.Google Scholar
Vandycke, S. & Bergerat, F. (1992) Tectonique de failles et paléo-contraintes dans les formations crétacées du Boulonnais (France). Implications géodynamiques. Bull. Soc. géol. Franc. 163, 553560.Google Scholar
Wray, D.S. & Gale, A.S. (1993) Geochemical correlation of marl bands in Turonian chalks of the Anglo- Paris Basin. Pp. 211-226 in: High Resolution Stratigraphy. (Hailwood, E.A. & Kidd, R.B., editors) Geological Society Special Publication, 70.Google Scholar