Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T20:27:38.872Z Has data issue: false hasContentIssue false

Reconstruction of palaeothermal conditions in a passive margin using illite-smectite mixed-layer series (BA1 scientific deep drill-hole, Ardeche, France)

Published online by Cambridge University Press:  09 July 2018

C. Renac
Affiliation:
Petrologie des Altérations Hydrothermales, URA 721 CNRS/Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
A. Meunier
Affiliation:
Petrologie des Altérations Hydrothermales, URA 721 CNRS/Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France

Abstract

The comparison between measured and predicted smectite percent (%Sm) in an illite-smectite (I-S) mixed-layer series was used to estimate the thermal conditions of diagenesis in the Ardèche sedimentary series. Measurements were performed using the decomposition procedure (Lanson & Besson, 1992) of XRD patterns obtained from oriented preparations (<0.2 μm fractions). Three particle populations were identified: I-S, poorly crystallized illite (PCI), and well crystallized illite (WCI); the %Sm was measured in the I-S population by comparison with calculated XRD patterns using the NEWMOD software (Reynolds, 1985). The theoretical evolution of %Sm with depth obtained with the two first-order kinetic reaction processes described by Velde & Vasseur (1992) was compared to the measured one at Balazuc. The best fit was obtained for the following conditions: 35°C km–1 and between 1500 and 2000 m for the thermal gradient and the eroded piles, respectively. The predicted values for I-S compositions in the 10–0% Sm range are overestimated by the model because the reaction controlling the composition is no longer the dissolution of I-S but the ripening of illitic particles (PCI and WCI).

Two zones can be distinguished in the sedimentary series: (1) down to 55 m, the %Sm of I-S particles is highly variable and seems to be controlled by local variations in permeability and chemical composition; (2) down to 550 m, the %Sm of I-S particles is more strictly dependent on the general time-temperature conditions. An anomalously high %Sm value is located in the vicinity of faults at 1669 m due to local change of the water/rock ratio.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambert, P. (1991) L'évolution géomorphologique du Languedoc Central (Grande Causses méridionaux-Piémont languedocien) depuis le Néogène. Thèse Doctorat, Univ. Aix-Marseille, France.Google Scholar
Awwmler, D.N. (1993) lllite-smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocene-Eocene. J. Sed. Pet. 63, 501512.Google Scholar
Baronnet, A. (1982) Ostwald ripening in solution. The case of calcite and mica. Estudios Geolótgicos 38, 185198.Google Scholar
Booine, M.W. (1985) Clay mineralogy of insoluble residues in marine evaporites. In: Mineralogy— Applications to the Minerals Industry (Hausen, D.M. & Kopp, O.C., editors). Am. Inst. Mining, Metallurgical Petroleum Engineers, New York.Google Scholar
Bodine, M.W. & Madsen, B.M. (1985) Mixed-layered chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah. Proc. Int. Clay Conf. Denver, 8593.Google Scholar
Demonoodin, L. & Vasseur, G. (1992) Constraint and present thermal state on drill-hole of BA1. Doc. Bureau Recherches Géologiques et Minières, 223, 171180.Google Scholar
Dlsnar, J.R. (1986) Détermination de paléotempdratures maximales d'enfouissement de sédiments charbon-neux à partir de données de pyrolyse. C. R. Acad. Sc. Paris, Série II, 303, 691-696.Google Scholar
Disnar, J.R. (1994) Organic geochemistry and thermal history of the Mesozoic of the Ardèche Margin. Chem. Geol. 6, 5568.Google Scholar
Dunoyer De Segonzac, G. (1969) Les minéraux argileux dans la diagenèse, passage au métamorphisme. Mém. Serv. Carte Géol. Alsace - Lorrraine, 29, 323 pp.Google Scholar
Eberl, D.D., Środoń, J., Kralik, M., Taylor, B.E. & Peterman, Z. (1990) Ostwald ripening of clays and metamorphic rocks. Science, 248, 474-477.Google Scholar
Fouillac, A.M., Renac, C., Meunier, A. & Steinberg, M. (1995) Mineralogical and isotopic study of clays from the Ardèche paleomargin, well Bai, Ardèche, France. Chemical J. (submitted).Google Scholar
Giot, D., Roure, F., Elmi, S., Lajat, D. & Steinberg, M. (1991) Découverte d'accidents distensifs majeurs d'âge jurassique sur la marge continentale du bassin du sud-est, Ardèche, France (programme G.P.F.). C. R. Acad. Sci Paris, Série II, 312, 747754.Google Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner. 41, 240-259.Google Scholar
Hoggett, J.M. (1984) Controls on mineral authigenesis in coal measures sandstones of the east midlands UK. Clay Miner. 19, 343357.CrossRefGoogle Scholar
Lanson, B. (1990) Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse. Thèse de Doctorat, Univ. Paris VI, France.Google Scholar
Lanson, B. & Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns. Clays Clay Miner. 40, 4052.Google Scholar
Lanson, B. & Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis. Am. J. Sci. 291, 473506.Google Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex US diagenetic evolution. Clays Clay Miner. 40, 629643.Google Scholar
Lestrat, P. (1992) Forage scientifique de l'ardèche. Doc. Bureau Recherches Géologiques et Minières, 218, 1427.Google Scholar
Mathieu, Y. & Velde, B. (1989) Identification of thermal anomalies using clay mineral composition. Clay Miner. 24, 591602.Google Scholar
Renac, C. (1994) Diagenèse des minéraux argileux dans la marge passive Cévenole (forage GPF Balazuc 1, France): structure cristalline morphologie composition isotopique datation K-Ar. Thèse Doctorat, Univ. Poitiers, France.Google Scholar
Jr.Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London, Monograph 5.Google Scholar
Jr.Reynolds, R.C. (1985) NEWMOD: a Computer Program for the Calculation of One-Dimensional Patterns of Mixed-Layered Clays. Reynolds, R.C., 8 Brook Rd., Hanover, NH03755, USA.Google Scholar
Środoiń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Miner. 32, 337349.Google Scholar
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Petrol. Geol. Bull. 74, 15591570.Google Scholar
Varajao, A. & Meunier, A. (1994) Particle morphological evolution during the conversion of I/S to illite in Lower Cretaceous shales from Sergipe-Alagoas basin, Brazil. Clays Clay Miner. (in press).Google Scholar
Velde, B. & Espitalié, J. (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. J. Petrol. Geol. 12, 103-110.CrossRefGoogle Scholar
Velde, B. & Vasseur, G. (1992) A kinetic model of the smectite-to-illite transformation based on diagenetic mineral series. Am. Miner. 77, 967976.Google Scholar
Watanabe, T. (1981) Identification of illite/montmor-illonite interstratification by X-ray powder diffraction. J. Miner. Soc. Jpn. Spec. Issue, 15, 3241 (in Japanese).Google Scholar
Watanabe, T. (1988) The structural model of illite/ smectite interstratified minerals and the diagram for their identification. Clay Sci. 7, 97114..Google Scholar