Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:04:12.501Z Has data issue: false hasContentIssue false

Etude comparee des complexes hectorite- et vermiculite-decylammonium a l'aide des spectrometries infrarouge et raman

Published online by Cambridge University Press:  09 July 2018

A. Vimond-Laboudigue
Affiliation:
Station de Science du Sol, INRA, Route de Saint Cyr, F-78026, Versailles, France
R. Prost
Affiliation:
Station de Science du Sol, INRA, Route de Saint Cyr, F-78026, Versailles, France

Resume

L'arrangement des cations décylammonium échangés entre les feuillets de la vermiculite et de l'hectorite a été précisé à l'aide des spectrométries infrarouge (IR) et Raman. Les expériences de deutération et de dichroïsme faites par spectrométrie IR montrent que l'axe C3 du groupe NH3+ est confondu avec l'axe de la cavité hexagonale sous-jacente, dans le cas de la vermiculite comme dans celui de l'hectorite, et que dans la vermiculite, les groupes NH sont engagés dans des liaisons hydrogène avec les atomes d'oxygène des tétraèdres substitués. La spectrométrie Raman permet de comparer l'arrangement des chaînes alkyles dans les deux phyllosilicates. En effet, cette technique donne accès à des modes de vibration très sensibles à la conformation des chaînes carbonées, en particulier grâce à la décomposition des bandes de vibration de valence des groupements CH2 et CH3. Ainsi, dans la vermiculite, on montre que les chaînes sont linéaires, et que leur arrangement interdigité est proche de celui du chlorure de décylammonium cristallisé. Les spectres Raman obtenus pour l'hectorite mettent en évidence l'existence de conformations gauches dans les chaînes alkyles, qui caractérisent une rotation de la chaîne autour de la liaison C-C voisine du groupe NH3+ terminal. Les résultats obtenus en Raman montrent par ailleurs que les interactions entre les chaînes alkyles sont beaucoup plus faibles que dans le cas de la vermiculite et confortent le modèle proposé ici pour le complexe hectorite-décylammonium, pour lequel les chaînes sont parallèle aux surfaces des feuillets.

Abstract

Abstract

Hectorite- and vermiculite-decylammonium complexes were studied by means of infrared (IR) and Raman spectroscopies in order to compare the distribution of alkylammonium for two clays which have different charges. In each complex, a perpendicular arrangement of terminal NH+3 groups to the silicate plane was deduced on IR spectra from deuteration and dichroïsm experiments. It was shown from IR results that for vermiculite-decylammonium, NH groups are involved in hydrogen bonds with oxygen atoms of the silica sheet linked to Si/Al substituted tetrahedra. Raman spectroscopy was particularly useful for comparing the arrangement of decylammonium cations in the interlayer spaces of both phyllosilicates; decomposition of complex stretching bands showed vibration modes which are very sensitive to intra and inter-molecular conformations of hydrocarbon chains. For vermiculite, the arrangement of linear chains in interdigitated bilayers is close to that of crystallized decylammonium chloride. For hectorite, specific modes on Raman spectra were characteristic of a kink conformation of hydrocarbon chains next to the polar end. It could be deduced from these spectra that interchain interactions are much weaker in hectorite than in vermiculite, in relation to a flat disposition of the alkyl chains relative to the layers in hectorite-decylammonium.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, S., Zerbi, G. & Wunder, L. (1982) Fermi resonances and vibrational spectra of crystalline and amorphous potymethylene chains. J. Phys. Chem. 86, 3140-3149.CrossRefGoogle Scholar
Ames, L.L. Jr., Sand, L.B. & Goldrich, S.S. (1958) A contribution on the Hector, California bentonite deposit. Econ. Geol. 53, 2237.Google Scholar
Baron, D. (1991) Logiciels pour la chimie. Soc. Fran∼aise de chimie, Pads, France, p. 282.Google Scholar
Brindley, G.W. & Brown, G. (1980). Crystal Structures of Clay Minerals and their X-ray Identification, pp. 226–231. Mineralogical Society, London.Google Scholar
Brown, K.G., Bicknell-Brown, E. & Ladjadj, M. (1987) Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids. J. Phys. Chem. 91, 34363442.CrossRefGoogle Scholar
Casal, H.L., Cameron, D.G. & Mantsch, H.H. (1985) A vibrational spectroscopic characterization of the solid-phase behavior of n-C10H21NH3Cl and (n-C10H21NH3)2CdCl4 . J. Phys. Chem. 89, 55575565.Google Scholar
Casal, H.L., Mantsch, H.H. & Cameron, D.G. (1984) An infrared spectroscopic study of the structural phase transitions of n-C10H21NH3Cl. Solid State Commun. 49, 571573.Google Scholar
Fernandez, M., Serratosa, J.M. & Johns, W.D. (1970) Perturbation of the stretching vibration of OH groups in phyllosilicates by the interlayer cations. Reunion hispano-belga de ArciUas, 163–167.Google Scholar
Gaber, B.P. & Peticolas, W.L. (1977) On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochim. biophys. Acta. 465, 260274.Google Scholar
Harrand, M. (1985) Study of the configuration of phospholipids (as models for biological membranes) by Raman Spectroscopy: intensity and polarization. Pp. 265–270 in: Spectroscopy of Biological Molecules (Alix, A.J.P., Bernard, L. & Manfait, M., editors). Wiley, Chichester.Google Scholar
Johns, W.D. & Sen Gupta, P.K. (1967) Vermiculitealkylammonium complexes. Am. Miner. 52, 17061724.Google Scholar
Kind, R., Blinc, R., Arend, H., Muralt, P., Slak, J., Chapuis, G., Schenk, K.J. & Zeks, B. (1982) Phase transition from an intercalated to a nonintercalated structure in a lipid bilayer. Phys. Rev. A, 26, 18161819.Google Scholar
Lagaly, G. & Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. Proc. Int. Clay Conf. Tokyo, 61-80.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner. 16, 1–21.Google Scholar
Levin, I.W. (1984) Vibrational spectroscopy of membrane assemblies. Pp. 1–48 in: Advances in Infrared and Raman Spectroscopy, 11, (Clark, R.J.H. & Hester, R.E., editors). Wiley Heyden.Google Scholar
Litman, B.J., Lewis, E.N. & Levin, I.W. (1991) Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry, 30, 2, 313319.Google Scholar
Martin-Rubi, J.A., Rausell-Colom, J.A. & Serratosa, J.M. (1974) Infrared absorption and X-ray diffraction study of butylammonium complexes of phyllosilicates. Clays Clay Miner. 22, 8790.CrossRefGoogle Scholar
Mortland, M.M., Shaobai, S. & Boyd, S.A. (1986) Clayorganic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner. 34, 581585.CrossRefGoogle Scholar
Picquart, M. (1990) Structures et phases de systèmes amphiphiles: étude par diffusion Raman. Thèse de docteur ès Sciences Physiques, Univ. R. Descartes, Paris V, France.Google Scholar
Picquart, M. & Lacrampe, G. (1987) Phase transitions of decylammonium chloride by Raman and IR spectroscopic studies. Solid State Commun. 62, 73–78.Google Scholar
Prost, R. (1975) Etude de l'hydratation des argiles: interactions eau-mindral et mécanisme de la rétention de l'eau. Thèse de docteur ès Sciences, Univ. Paris VI, France.Google Scholar
Rausell-Colom, J.A., Fernandez, M., Serratosa, J.M., Alcover, J.F. & Gatineau, L. (1980) Organisation de l'espace inteflamellaire dans les vermiculites monocouches et anhydres. Clay Miner. 15, 37–58.Google Scholar
Ricard, L., Rey-Lafon, M. & Bman, C. (1984) Vibrational study of the dynamics of n-decylammonium chains in the perovskite-type layer compound (C10H21NH3)2CdCl4 . J. Phys. Chem. 88, 56145620.Google Scholar
Schenk, K.J., Ogle, C.A., Chapuis, G., Cavagnat, R., Jokir, A. & Rey-Lafon, M. (1989) A vibrational and structural study of the solid-solid phase transitions in C10H21NH3Cl. J. Phys. Chem. 93, 50405049.Google Scholar
Serratosa, J.M., Johns, W.D. & Smmoyama, A. (1970) IR study of alkylammonium vermiculite complexes. Clays Clay Miner 18, 107113.Google Scholar
Vedoer, W. (1964) Correlations between infrared spectrum and chemical composition of mica. Am. Miner. 49, 736768.Google Scholar
Walker, G.F. (1967) Interactions of n-alkylammonium ions with mica-type layer lattices. Clay Miner. 7, 129143.Google Scholar