No CrossRef data available.
Article contents
The Zeroes of Functions Related to Dirichlet L-Functions
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Hecke, [3], has shown for x a real Dirichlet character modulo q, the associated Dirichlet L-function L(s, x) has infinitely many zeroes on the line
Here, using a method of Polya, [5], we show that both the real and imaginary parts of a function associated to L(s, x) through the functional equation, have infinitely many zeroes on any line
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
1.
Berlowitz, B., Extensions of a theorem of Hardy, Acta Arithmetic. 14 (1962), 203-207.Google Scholar
2.
Davenport, H., Multiplicative number theory,
Markham Publishing Company, Chicago, 1967.Google Scholar
3.
Hecke, E., Über Dirichlet-reihen mit funktionalgleichung und ihre nullstellen auf der mittelgeraden, Sitzungsberichte der Bayerischen Akademie der Wissenschaften. Mathematisch—Natur wissenschaftliche
Abteilung (1962), 73-95.Google Scholar
4.
Lang, S., Algebraic number theory,
Addison Wesley Publishing Company, Inc.
Reading, Mass., 1970.Google Scholar
5.
Pôlya, G., Über die algebraisch-funktion theoretischen Untersuchungen von J. L. W. V.
Jensen, Kgl. Danske Videnskabernes Selskab. 7 (1962), No. 17.Google Scholar
6.
Titchmarsh, E. C., The theory of the Riemann zeta-function,
Clarendon Press, Oxford, 1951.Google Scholar
You have
Access