Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T17:07:50.631Z Has data issue: false hasContentIssue false

Rings whose Elements are the Sum of a Tripotent and an Element from the Jacobson Radical

Published online by Cambridge University Press:  15 March 2019

M. Tamer Koşan
Affiliation:
Department of Mathematics, Gazi University, Ankara, Turkey Email: [email protected]
Tülay Yildirim
Affiliation:
Department of Mathematics, Gebze Technical University, Gebze/Kocaeli, Turkey Email: [email protected]
Y. Zhou
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St.John’s, NL A1C 5S7, Canada Email: [email protected]

Abstract

This paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.

Type
Article
Copyright
© Canadian Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burgess, W. D. and Raphael, R., On commutative clean rings and pm rings . In: Rings, Modules and Representations , Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009, pp. 3555.Google Scholar
Chen, H., On strongly J-clean rings . Commun. Algebra 38(2010), 37903804.Google Scholar
Chen, H. and Sheibani, M., Strongly 2-nil-clean rings . J. Algebra Appl. 16(2017), 1750178 (12 pages).Google Scholar
Connell, I. G., On the group ring . Canad. J. Math. 15(1963), 650685.Google Scholar
Diesl, A. J., Nil clean rings . J. Algebra 383(2013), 197211.Google Scholar
Hirano, Y. and Tominaga, H., Rings in which every element is the sum of two idempotents . Bull. Austral. Math. Soc. 37(1988), 161164.Google Scholar
Khurana, D., Lam, T. Y., and Nielsen, P. P., Exchange rings, exchange equations, and lifting properties . Internat. J. Algebra Comput. 26(2016), 11771198.Google Scholar
Koşan, T., Leroy, A., and Matczuk, J., On UJ-rings . Commun. Algebra 46(2018), 22972303.Google Scholar
Koşan, T., Wang, Z., and Zhou, Y., Nil-clean and strongly nil-clean rings . J. Pure Appl. Algebra 220(2016), 633646.Google Scholar
Lee, T. K. and Zhou, Y., A class of exchange rings . Glasgow Math. J. 50(2008), 509522.Google Scholar
Levitzki, J., On the structure of algebraic algebras and related rings . Trans. Amer. Math. Soc. 74(1953), 384409.Google Scholar
Matczuk, J., Conjugate (nil) clean rings and Köthe’s conjecture . J. Algebra Appl. 16(2017), 1750073 (14 pages).Google Scholar
Mazurek, R., Nielsen, P. P., and Ziembowski, M., Commuting idempotents, square-free modules, and the exchange property . J. Algebra 444(2015), 5280.Google Scholar
Nicholson, W. K., Lifting idempotents and exchange rings . Trans. Amer. Math. Soc. 229(1977), 269278.Google Scholar
Nicholson, W. K. and Zhou, Y., Clean general rings . J. Algebra 291(2005), 297311.Google Scholar
Nicholson, W. K. and Zhou, Y., Strong lifting . J. Algebra 285(2005), 795818.Google Scholar
Sands, A. D., Radicals and Morita contexts . J. Algebra 24(1973), 335345.Google Scholar
Zhou, Y., On clean group rings . In: Advances in Ring Theory , Trends in Mathematics, Birkhäuser, Verlag Basel/Switzerland, 2010, pp. 335345.Google Scholar
Zhou, Y., Rings in which elements are sums of nilpotents, idempotents and tripotents . J. Algebra Appl. 17(2018), 1850009 (7 pages).Google Scholar