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Rings whose Elements are the Sum of
a Tripotent and an Element from the
Jacobson Radical

M. Tamer Koşan, Tülay Yildirim, and Y. Zhou

Abstract. his paper is about rings R for which every element is a sum of a tripotent and an element
from the Jacobson radical J(R). hese rings are called semi-tripotent rings. Examples include Boolean
rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many char-
acterizations of semi-tripotent rings are obtained. Necessary and suõcient conditions for a Morita
context (respectively, for a group ring of an abelian group or a locally ûnite nilpotent group) to be
semi-tripotent are proved.

1 Introduction

A ring is called Boolean if each of its elements is an idempotent. As natural general-
izations of Boolean rings, rings R for which R/J(R) is Boolean and J(R) is nil and,
respectively, rings R for which R/J(R) is Boolean and idempotents li� modulo J(R)
have beenwell studied in the literature. he former is the characterization of strongly
nil-clean rings,where a ring is called strongly nil-clean if each of its elements is a sum
of an idempotent and a nilpotent that commute (see [5] and [9]), and the latter is the
notion of semi-boolean rings, which are exactly those rings R whose elements are the
sum of an idempotent and an element from J(R) (see [15]). Here we can view semi-
boolean rings as a natural generalization of strongly nil-clean rings,with “J(R) is nil”
being replaced by “idempotents li� modulo J(R)”.

Let p be a prime. he following questions aremotivated.
(i) What can be said about rings R for which R/J(R) has identity x p = x and J(R)

is nil?
(ii) What can be said about rings R forwhich R/J(R) has identity x p = x and idem-

potents li� modulo J(R)?
Answers to these questions are known for p = 2, as mentioned above. Moreover,
question (i) was answered for p = 3 in [3], and further for p = 5 in [19]. In this paper,
we provide an answer to question (ii) for p = 3. Let n > 1 be an integer. An element
a ∈ R is called an n-potent if an = a, and a 3-potent is usually called a tripotent. We call
a ring R semi-n-potent if R/J(R) has identity xn = x and n-potents li� modulo J(R),
or equivalently every element ofR is a sumof an n-potent and an element from J(R); a
semi-3-potent ring is called a semi-tripotent ring. In Section 2, some basic properties
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of semi-n-potent rings are proved. For instance, the corner rings of a semi-n-potent
ring are again semi-n-potent, and a suõcient and necessary condition for a Morita
context to be semi-n-potent is obtained. In Section 3, various characterizations of
semi-tripotent rings are obtained. Some new equivalent conditions of a semi-boolean
ring are also presented. In Section 4, we determinewhen the group ring of an abelian
group or a locally ûnite nilpotent group is semi-tripotent.

hroughout, R is an associative ring with unity. he Jacobson radical of R is de-
noted by J(R) or J. he group of units and the set of nilpotents of R are denoted by
U(R) andNil(R), respectively. WewriteZn for the ring of integersmodulo n,Mn(R)
for the ring of n × n matrices over R, and R[x] (respectively, R[[x]]) for the ring of
polynomials (respectively, power series) over R.

2 Semi-n-potent Rings

In this section, n ≥ 2 is a ûxed integer.

Lemma 2.1 Let R be a ring and x ∈ R. he following are equivalent:
(1) xn = x.
(2) x2 = vx, where vn−1 = 1.
(3) x2 = φ(x)x, where φ(t) ∈ Z[t] with φ(x)n−1 = 1.
(4) x2 = vx, where vn−1 = 1 and vx = xv.
(5) x = eu, where e2 = e, un−1 = 1 and eu = ue.
(6) x = eu, where e2 = e, un−1 = 1 and eue = ue.

Proof (1) ⇒ (3). If xn = x, let φ(t) = 1 + t − tn−1 ∈ Z[t]. hen x2 = φ(x)x, and
φ(x)k = 1 + xk − xn−1 for k = 1, 2, . . . , n. In particular, φ(x)n−1 = 1.

(3)⇒ (4) and (5)⇒ (6). hey are trivial.
(4) ⇒ (5). Given (4), we see x = v−1x2 = vn−2x2 = v(vn−3x2) with (vn−3x2)2 =

vn−3x2.
(6)⇒ (2). Given (6), we have x2 = eueu = ux.
(2) ⇒ (1). Given (2), we have xn = vx ⋅ xn−2 = vxn−1 = v ⋅ vx ⋅ xn−3 = v2xn−2 =

⋅ ⋅ ⋅ = vn−1x = x. ∎

Deûnition 2.2 Let I be an ideal of a ring R. We say that n-potents li� modulo I in R
if whenever an − a ∈ I, there exists en = e ∈ R such that a − e ∈ I.

Deûnition 2.3 A ring R is called a semi-n-potent ring if every element of R is a sum
of an n-potent and an element from J(R), equivalently if R/J(R) has identity xn = x
and n-potents li� modulo J(R) in R.

he next example can be easily veriûed.

Example 2.4 Let R, S be rings, V an (R, S)-bimodule, M an R-bimodule, and
m ≥ 1.
(1) If R is semi-n-potent, then so is every homomorphic image of R.
(2) A direct product∏Rα of rings is semi-n-potent if and only if every Rα is semi-

n-potent.
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(3) he formal triangular matrix ring (R V
0 S) is semi-n-potent if and only if R and S

are semi-n-potent.
(4) Tm(R) is semi-n-potent if and only if R is semi-n-potent.
(5) he trivial extension R ∝ M is semi-n-potent if and only if R is semi-n-potent.
(6) R[x]/(xm) is semi-n-potent if and only if R is semi-n-potent.
(7) R[[x]] is semi-n-potent if and only if R is semi-n-potent.

A subring of a semi-n-potent ring need not be semi-n-potent: Z2[[x]] is semi-
n-potent, but Z2[x] is not semi-n-potent.

Lemma 2.5 Let I be an ideal of a ring R. he following are equivalent:
(1) If an − a ∈ I, then there exists en = e ∈ aR such that a − e ∈ I.
(2) If an − a ∈ I, then there exists en = e ∈ aRa such that a − e ∈ I.
(3) If an − a ∈ I, then there exists en = e ∈ Ra such that a − e ∈ I.

Proof Write r ≡ s to mean that r − s ∈ I, so that r ≡ s implies that xry ≡ xsy for
all x , y ∈ R. It suõces to show the implication “(1) ⇒ (2)”. Suppose that (1) holds.
If an ≡ a, then (an)n ≡ an . Choose f n = f ∈ anR such that an ≡ f , so f ≡ a.
Write f = anx with x ∈ R. We may assume that x = x f n−1. Let e = an−1xa ∈ aRa.
hen en = an−1x(anx)n−1a = an−1x f n−1a = an−1xa = e. Moreover, e = an−1xa ≡
(an)n−1xa = (an)n−2(anx)a ≡ (an)n−2 f a ≡ an−2 f a ≡ an ≡ a. So (2) holds. ∎

We say that n-potents li� strongly modulo I if the equivalent conditions of
Lemma 2.5 hold. he following result is known when n = 2 (see [16, Lemma 5]).

Proposition 2.6 Let R be a ring. If n-potents li� modulo J(R), then they li� strongly
modulo J(R).

Proof Let an−a ∈ J(R). Choose f n = f ∈R such that f −a ∈ J(R). hen f n−1−an−1 ∈
J(R), so u ∶= 1− ( f n−1 − an−1) ∈ U(R), and u f = an−1 f ∈ aR. So e ∶= u f u−1 ∈ aR and
en = e. As u = 1 in R/J(R), e = u f u−1 = f = a. ∎

Corollary 2.7 Let R be a ring with e2 = e ∈ R. If n-potents li� modulo J(R) in R,
then n-potents li� modulo J(eRe) in eRe.

Proof Let an − a ∈ J(eRe) where a ∈ eRe. hen an − a ∈ eJ(R)e ⊆ J(R), so, by
Proposition 2.6, there exists f n = f ∈ aRa such that a − f ∈ J(R). As f ∈ aRa ⊆ eRe,
a − f ∈ J(R) ∩ eRe = J(eRe). ∎

Corollary 2.8 Let e2 = e ∈ R. If R is semi-n-potent, then so is eRe.

Proof As n-potents li� modulo J(R) in R, n-potents li� modulo eJe in eRe by
Corollary 2.7. Moreover, eRe/J(eRe) = eRe/eJe ≅ eRe ⊆ R, where R = R/J(R).
As R has identity xn = x, eRe, and hence eRe/J(eRe) has identity xn = x. So eRe is
semi-n-potent. ∎

It is easy to see that no proper matrix ring can be semi-n-potent. Nextwe consider
when aMorita context is a semi-n-potent ring.
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A Morita context is a 4-tuple (A M
N B ) , where A, B are rings, AMB and BNA are bi-

modules, and there exist context products M × N → A and N × M → B written
multiplicatively as (w , z) ↦ wz and (z,w) ↦ zw, such that (A M

N B ) is an associative
ring with the obvious matrix operations.

he next result (in fact, amore general result) can be found in [17].

Lemma 2.9 ([17]) Let R ∶= (A M
N B ) be a Morita context. hen J(R) = (J(A) M0

N0 J(B)) ,
where M0 = {x ∈ M ∶ xN ⊆ J(A)} and N0 = {y ∈ N ∶ yM ⊆ J(B)} .

heorem 2.10 Let R ∶= (A M
N B ) be aMorita context. hen R is semi-n-potent if and

only if A, B are semi-n-potent, MN ⊆ J(A) and NM ⊆ J(B).

Proof (⇒). As R is semi-n-potent, R/J(R) has identity xn = x. Especially, R/J(R)
is reduced. So, by Lemma 2.9, M = M0 and N = N0, and it follows that MN ⊆ J(A)
and NM ⊆ J(B). By Corollary 2.8, A, B are semi-n-potent.

(⇐). As MN ⊆ J(A) and NM ⊆ J(B), we have J(R) = (J(A) M
N J(B)) by Lemma 2.9.

For α ∶= (a x
y b) ∈ R, write a = e + jA and b = f + jB where en = e ∈ A, f n = f ∈ B,

jA ∈ J(A) and jB ∈ J(B). hen α = (e 0
0 f) + ( jA x

y jB) is a sum of an n-potent and an
element from J(R). So R is semi-n-potent. ∎

As a consequence ofheorem 2.10, Corollary 2.8 has the following improvement.

Corollary 2.11 Let e2 = e ∈ R. hen R is semi-n-potent if and only if eRe and
(1 − e)R(1 − e) are semi-n-potent, and eR(1 − e) and (1 − e)Re both are contained
in J(R).

Proof Consider thePierce decompositionR = ( eRe eR(1−e)
(1−e)Re (1−e)R(1−e)). Byheorem 2.10,

R is semi-n-potent if and only if eRe and (1 − e)R(1 − e) are semi-n-potent,
eR(1 − e)Re ⊆ eJ(R)e and (1 − e)ReR(1 − e) ⊆ (1 − e)J(R)(1 − e). Note that
eR(1−e)Re ⊆ eJ(R)e if and only if eR(1−e)Re ⊆ J(R), if and only if (eR(1−e)R) 2 ⊆
J(R), if and only if eR(1 − e)R ⊆ J(R), if and only if eR(1 − e) ⊆ J(R). Similarly,
(1 − e)ReR(1 − e) ⊆ (1 − e)J(R)(1 − e) if and only if (1 − e)Re ⊆ J(R). ∎

3 Characterizations of Semi-tripotent Rings

For n ≥ 3, if n-potents li� modulo J(R) in a ring R, then idempotents li� modulo
J(R). Indeed, if a2 − a ∈ J(R), then a − e ∈ J(R) where en = e ∈ R. So a − en−1 =
(a − an−1) + (an−1 − en−1) ∈ J(R) with en−1 an idempotent. his raises the question
whether the converse holds. he next example shows that, for each integer n ≥ 4,
there exists a ring R such that idempotents li� modulo J(R) but n-potents do not.

Example 3.1 Let n ≥ 4, and let p(t) ∈ R[t] be any irreducible polynomial of de-
gree 2 which divides tn−1 − 1. (For example, if n = 4 then take p(t) = t2 + t + 1.)
Let R = R[t](p(t)), the localization of R[t] at the maximal ideal generated by p(t).
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hen J(R) is generated by p(t), so R/J(R) ≅ R[t]/(p(t)) ≅ C, the ûeld of complex
numbers. Hence idempotents trivially li� modulo J(R).

he only n-potents in R are 0, 1, and possibly −1 when n is odd. (his is because R
is a subring of the ûeld of rational functions overR.) Since neither t nor t − 1 nor t + 1
lies in J(R), it follows that t is an n-potent modulo J(R) (since tn − t ∈ J(R)) which
cannot be li�ed to an n-potent in R.

For n = 3, the next lemma gives a partial answer to the question above. Note
that square roots of 1 li� modulo the Jacobson radical exactly when idempotents li�,
provided 2 is a unit (this is proved in [7]), and this result can be used to give a quick
proof of the next lemma. But here we give a direct, self-contained proof.

Lemma 3.2 Let R be a ring with 2 ∈ U(R). hen idempotents li� modulo J(R) if
and only if tripotents li� modulo J(R).

Proof he suõciency is noticed above. For the necessity, suppose a3−a ∈ J(R). Let
b = 1

2 (a
2 + a) and c = 1

2 (a
2 − a). hen a = b − c, b − b2 = 1

4 (a + 2)(a − a3) ∈ J(R)
and c − c2 = 1

4 (a − 2)(a − a3) ∈ J(R). hus, in R/J(R), a = b − c, b2 = b and c2 = c.
Moreover, b c = c b = 1

4 (a
4 − a2) = 0. Since idempotents li� modulo J(R), b and c

can be li�ed to orthogonal idempotents f and g in R. Let e = f − g. hen e3 = e and
a = b − c = f − g = e. Hence, tripotents li� modulo J(R). ∎

Lemma 3.3 he following are equivalent for a ring R.
(1) For each a ∈ R, a = ve where e2 = e and v2 = 1.
(2) For each a ∈ R, a = fw where f 2 = f and w2 = 1.
(3) R has identity x3 = x.

Proof (1) ⇒ (3). By (1), R is a unit-regular ring. We show that R is reduced.
Assume that r2 = 0 with 0 /= r ∈ R. By [11,heorem 2.1], there exists 0 /= e2 = e ∈ RrR
such that eRe ≅ M2(S) for a non-trivial ring S. Let A = (1 1

1 0) ∈ M2(S) and then
A2 = A+ I2 /= I2. So, there exists u ∈ U(eRe) such that u2 /= e. hus y ∶= u + (1− e) ∈
U(R) and y2 = u2 + (1 − e) /= 1, contradicting (1). So R is reduced, and hence is
abelian. herefore, for each a ∈ R, write a = ve with e2 = e and v2 = 1, and we see
a3 = v3e3 = ve = a; this proves (3).

(3)⇒ (1). his is clear by Lemma 2.1.
(1)⇔ (2). he proof is similar. ∎

Lemma 3.4 Suppose that, for each a ∈ R, a = b + j1 + ev = b + j2 + ve, where
j1 , j2 ∈ J(R), e2 = e ∈ R, v2 = 1, b ∈ Nil(R) with ab = ba. hen 6 ∈ J(R), idempotents
li� modulo J(R), and R/J(R) has identity x3 = x.

Proof Let J = J(R), and R = R/J. Assume that a2 − a ∈ J, andwrite a = b+ j1 + ev =
b + j2 + ve, where j1 , j2 ∈ J, e2 = e ∈ R, v2 = 1, b ∈ Nil(R) with ab = ba. hen

a2 = (b + j1 + ev)(b + j2 + ve)
= [ba + (a − b)b] + [ j1( j2 + ve) + ev j2] + e .
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Let c = ba + (a − b)b. hen c ∈ Nil(R) and ac = ca. So, in R, a = a2 = c + e, and it
follows that c + e = (c + e)2 = c2 + 2c e + e. hus, c = c2 + 2c e, i.e., c(1 − 2e) = c2. So
c = c2(1 − 2e)−1 = c2(1 − 2e). As c is nilpotent, it must be that c = 0. Hence a = e.

Write 2 = b+ j1+ ev = b+ j2+ve,where j1 , j2 ∈ J, e2 = e ∈ R, v2 = 1 and b ∈ Nil(R).
hen 2 = b + e v = b + ve, so

4 = (b + e v)(b + ve) = b(b + ve) + e vb + e = c + e ,

where c = b(b + ve) + e vb is nilpotent. So, 4
2 = (c + e)2 = c2 + 2c e + e, and hence

12 = 4
2 − 4 = (c2 + 2c e + e) − (c + e) = c(c + 2e − 1)

is nilpotent in R. It follows that 6 is nilpotent in R, so 6 = 0, or 6 ∈ J.
As 6 ∈ J, R = R1 × R2, where 2 = 0 in R1 and 3 = 0 in R2. Note that, by hypothesis,

for any a ∈ R, a = b+e v = b+v e,where e2 = e, v2 = 1 and b is nilpotentwith a b = b a,
so v e = e v, and hence (v e)3 = v e. So, R1 is Boolean by [19, Proposition 2.5] and R2
is zero or a subdirect product of Z3’s by [19, Proposition 2.8]. It follows that R/J has
identity x3 = x. ∎

Some characterizations are obtained for semi-tripotent rings.

heorem 3.5 he following are equivalent for a ring R:
(1) For each a ∈ R, a = j + f where j ∈ J(R) and f 3 = f , i.e., R is semi-tripotent.
(2) For each a ∈ R, a = b + j + f where j ∈ J(R), f 3 = f and b ∈ Nil(R) with ab = ba.
(3) For each a ∈ R, a = j + ev, where j ∈ J(R), e2 = e ∈ R and v2 = 1.
(4) For each a ∈ R, a = j + ve, where j ∈ J(R), e2 = e ∈ R and v2 = 1.
(5) R/J(R) has identity x3 = x and idempotents li� modulo J(R).
(6) R/J(R) = R1 × R2, where R1 is zero or a Boolean ring, R2 is zero or a subdirect

product of Z3’s, and idempotents li� modulo J(R).

Proof he implication (1) ⇒ (2) is obvious. he implications (1) ⇒ (3) and
(1)⇒ (4) follow from Lemma 2.1.

(i)⇒ (5): i = 2, 3, 4. First assume (3) holds. For each a ∈ R, a = e v where e2 = e
and v2 = 1. By Lemma 3.3, (3) implies that R/J has identity x3 = x; so R/J is abelian.
herefore, a = e v = v e. It follows that a = j1 + ev = j2 + ve for some j1 , j2 ∈ J.
Similarly, (4) implies that, for each a ∈ R, a = j1 + ev = j2 + ve where e2 = e , v2 = 1
and j1 , j2 ∈ J. Hence, in view of Lemma 2.1, either of (2), (3) and (4) implies that,
each a ∈ R, a = b + j1 + ev = b + j2 + ve, where j1 , j2 ∈ J(R), e2 = e ∈ R, v2 = 1,
b ∈ Nil(R) with ab = ba. hus, (5) holds by Lemma 3.4.

(5)⇔ (6). his is clear.
(5) ⇒ (1). Let a ∈ R. Since R ∶= R/J(R) has identity x3 = x, by [6, heorem 1]

1+ a = y+ z for some commuting idempotents y and z. By [13,heorem 2.1], one can
li� the idempotents y, z to commuting idempotents f , g in R. hus, 1+a = f +g+ j for
some j ∈ J(R), and hence a = f − (1− g)+ j where, as a diòerence of two commuting
idempotents, f − (1 − g) is a tripotent. ∎

We remark that an element that is a product of an idempotent and a square root
of 1 in a ring R may not be a sumof a tripotent and an element from J(R). To see this,
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consider R =M2(Q). hen, in R, a ∶= (2 1
0 0) = (1 2

0 0)(0 1
1 0) , a product of an idempotent

and a square root of 1, but a can not be a sumof a tripotent and an element from J(R).
We also remark that heorem 3.5(6) can not be replaced by the condition that

R = A × B, where A/J(A) is a Boolean ring and idempotents li� modulo J(A), and
B is zero or B/J(B) is a subdirect product of Z3’s and idempotents li� modulo J(B).
To see this, consider the formal matrix ring R = (Z(2) Q

0 Z(3)) , where Z(2) ,Z(3) are the
localizations of Z at 2 and 3. hen R is indecomposable, but idempotents li� modulo
J(R) and R/J(R) ≅ Z2 ×Z3.
A ring R is called semi-boolean if every element of R is a sumof an idempotent and

an element from J(R). It is known that a ring R is semi-boolean if and only if R/J(R)
is Boolean and idempotents li� modulo J(R) (see [15, Lemma 2.4]). A semi-boolean
ring was also termed a J-clean ring in [3], [8] and [12]. We note that the term J-clean
ring was used diòerently in [1]. We can add some new conditions to the equivalence
list for semi-boolean rings.

Corollary 3.6 he following are equivalent for a ring R:
(1) R is semi-boolean.
(2) For each a ∈ R, a = b + j + e, where b ∈ Nil(R), j ∈ J(R), e2 = e ∈ R and ab = ba.
(3) R/J(R) is Boolean and idempotents li� modulo J(R).
(4) R is semi-tripotent and 2 ∈ J(R).

Proof (1)⇒ (2). his is obvious.
(2) ⇒ (3). By heorem 3.5, we have R/J = R1 × R2, where R1 is a Boolean ring

and R2 is zero or a subdirect product of Z3’s. Assume on the contrary that R/J is not
Boolean. hen R2 /= 0, so R has a quotient ring isomorphic to Z3. As any quotient
ring of R still satisûes (2), wemay assume that R = Z3. So, since Nil(R) = J(R) = 0,
2 is an idempotent. hus, 2 = 1, a contradiction.

(1)⇔ (3). his is from [15, Lemma 2.4] (also see [8,heorem 3.2]).
(1)⇒ (4). his is easy to see.
(4)⇒ (3). For a ∈ R, a3 − a ∈ J(R) as R/J(R) has identity x3 = x. So (a2 − a)2 =

a4 − 2a3 + a2 = a(a3 − a) + 2(a2 − a3) ∈ J(R), and hence a2 − a ∈ J(R). So R/J(R)
is Boolean. ∎

he assumption that “ab = ba” in heorem 3.5 and Corollary 3.6 cannot be re-
moved: For k ≥ 2 and n ≥ 1, the ring R ∶= Mk(Z2n) is a nil-clean ring (see [5, Corol-
lary 3.17 and Example 4.5]), that is, every element of R is a sum of a nilpotent and an
idempotent, butR/J(R) isneither a Boolean ring nor a subdirect product of a Boolean
ring and a direct product of Z3’s. We also remark that there exists a ring R such that
R/J(R) is Boolean, but idempotents do not li� modulo J(R) (see [10, Example 15]).

None of the conditions of heorem 3.5 can be replaced by “For each a ∈ R,
a = b + j + ev, where j ∈ J(R), e2 = e, v2 = 1, and b ∈ Nil(R) with ab = ba”: One can
easily check that R =M2(Z2) satisûes the latter condition, but R is not semi-tripotent.

heorem 3.7 he following are equivalent for a ring R:
(1) R is semi-tripotent.
(2) For each a ∈ R, a = j + e + f , where j ∈ J(R), e2 = e, f 2 = f and e f = f e.
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(3) For each a ∈ R, a = j + e + f , where j ∈ J(R), e2 = e, f 3 = f and e f = f e.
(4) For each a ∈ R, a = j + b + e + f , where j ∈ J(R), b ∈ Nil(R), e2 = e, f 2 = f , and

b, e , f commute with one another.
(5) For each a ∈ R, a = j + b + e + f , where j ∈ J(R), b ∈ Nil(R), e2 = e, f 3 = f , and

b, e , f commute with one another.

Proof (1) ⇒ (2). By heorem 3.5, R/J = A/J ⊕ B/J, where A/J is a Boolean ring
and B/J is a subdirect product of Z3’s, and idempotens li� modulo J. Write 1 = α + β
where α ∈ A/J and β ∈ B/J. We may assume that, for some e2 = e ∈ R, α = e and
β = 1 − e. Let f = 1 − e. hen A/J = (eRe + J)/J and B/J = ( f R f + J)/J. Let x ∈ R be
an arbitrary element, and write x = a + b where a ∈ A/J and b ∈ B/J. Wemay assume
that a ∈ eRe and b ∈ f R f .
AsA/J isBoolean, a2−a ∈ J. So, by [16, Lemma 5], there exists e21 = e1 ∈ aRa ⊆ eRe

such that a − e1 ∈ J.
By Corollary 2.7, idempotents li� modulo J( f R f ) in f R f . As f R f /J( f R f ) ≅ B/J

is a subdirect product of Z3’s, b − b3 ∈ J( f R f ), and 2 ∈ U( f R f ). So, by Lemma 3.2,
there exists e32 = e2 ∈ f R f such that b − e2 ∈ J( f R f ) ⊆ J. hen x = j + e1 + e2 with
e1e2 = e2e1 = 0 and, to ûnish the proof, let g = e22 . hen g2 = g, and (e2− g)2−(e2− g)
= −3(e2−g) ∈ J( f R f ) ⊆ J. So by [16,Lemma 5], there exists h2 = h ∈ (e2−g)R(e2−g)
such that e2 − g − h ∈ J. Let j′ = e2 − g − h and write h = (e2 − g)r(e2 − g) with r ∈ R.
hen gh = h = hg. As h, g ∈ f R f , e1g = ge1 = 0 and e1h = he1 = 0. It follows that
e1+g and h are commuting idempotents and x = ( j+ j′)+(e1+g)+h. his veriûes (2).

(2)⇒ (3)⇒ (5) and (2)⇒ (4)⇒ (5). he implications are clear.
(5) ⇒ (1). By (5), every element of R/J(R) is a sum of a nilpotent, an idempo-

tent and a tripotent that commute with one another other. So, by [19,heorem 2.12],
R/J(R) has identity x3 = x, and hence Nil(R) ⊆ J(R). By heorem 3.5, to show (1)
it remains to show that idempotents li� modulo J(R). Assume that a − a2 ∈ J(R).
Write a = j + b + e + f as in (5). hen j + b ∈ J(R), so we may assume that b = 0.
hus a − a2 = ( f − f 2 − 2e f ) + ( j − ja − (e + f ) j) , so f − f 2 − 2e f ∈ J(R), and
hence f 2 − f − 2e f 2 = ( f − f 2 − 2e f ) f ∈ J(R). Let g = e + f 2 − 2e f 2. hen
a − g = j + ( f − f 2 + 2e f 2) ∈ J(R) and g2 = g. ∎

4 Group Rings

Semi-tripotent rings can be constructed viaMorita contexts by heorem 2.10. In this
section, we discuss when a group ring is semi-tripotent. A group G is called locally
ûnite if every ûnitely generated subgroup of G is ûnite. For a prime number p, a
group is called a p-group if the order of each of its elements is a power of p. A group
of exponent p is a non-trivial group inwhich every element has order p. Wewrite Cn
for the cyclic group of order n.

If R is a ring and G is a group, RG denotes the group ring of the group G over R.
he ring homomorphism ω∶RG → R, Σrg g ↦ Σrg is called the augmentation map,
and the kernel ker(ω) is called the augmentation ideal of the group ring RG and
is denoted by △(RG). Note that △(RG) is an ideal of RG generated by the set
{1 − g ∶ g ∈ G}.
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Lemma 4.1 Let R be a ring with 2 ∈ J(R) and G a group. If RG is semi-tripotent,
then G is a 2-group.

Proof As RG is semi-tripotent, (R/J)G ≅ RG/JG is semi-tripotent. As 2 ∈ J(R),
2 = 0 in (R/J)G, so (R/J)G is semi-boolean by Corollary 3.6. herefore, G is a
2-group by [9,heorem 4.4]. ∎

Lemma 4.2 Let R be a ring with 3 ∈ J(R) and G a locally ûnite p-group with p a
prime. If RG is semi-tripotent, then either G is a 3-group or G is a group of exponent 2.

Proof As RG is semi-tripotent, R is semi-tripotent, so by heorem 3.5 R/J = A× B
where A is a Boolean ring and B is zero or a subdirect product of Z3’s. As 3 ∈ J(R),
A = 0, so R/J = B which has identity x3 = x. If p /= 3, then by [4,heorem 3], BG is
(von Neumann) regular, so J(BG) = 0. But, as an image of RG, BG is semi-tripotent,
so BG has identity x3 = x. In particular, g2 = 1 for all g ∈ G. So, G is a group of
exponent 2. ∎

Lemma 4.3 Let R be a ring and G a locally ûnite group. If RG is semi-tripotent and
2 ∉ J(R) and 3 ∉ J(R), then G is a group of exponent 2.

Proof As RG is semi-tripotent, R is semi-tripotent, so by heorem 3.5 R/J = A× B
where A is a Boolean ring and B is zero or a subdirect product of Z3’s. As 2 ∉ J(R)
and 3 ∉ J(R), A /= 0 and B /= 0. As AG is semi-tripotent and 2 = 0 in A, G is a 2-group
by Lemma 4.1. As BG is semi-tripotent and 3 = 0 in B, G is a group of exponent 2 by
Lemma 4.2. ∎

Lemma 4.4 ([4, Proposition 9]) If R is a ring and G is a locally ûnite group, then
J(R) = J(RG) ∩ R. In particular, J(R)(RG) ⊆ J(RG).

Lemma 4.5 If R is a semi-tripotent ringwith 3 ∈ J(R) andG is a group of exponent 2,
then RG is semi-tripotent.

Proof Let J = J(R) and α ∈ RG. hen there exists a ûnite subgroup H of G such
that α ∈ RH. Here H is a direct product of ûnite copies of C2. As 2 ∈ U(R), RH
is a direct sum of ûnite copies of R, so RH is semi-tripotent. So, α is semi-tripotent
in RH. We show that α is semi-tripotent in RG. By Lemma 4.4, JH ⊆ J(RH). As R is
semi-tripotent with 3 ∈ J(R), R/J has identity x3 = x with 2 ∈ U(R/J). So, (R/J)H is
a commutative von Neumann regular ring by [4,heorem 3]. As (R/J)H ≅ RH/JH,
it follows that JH = J(RH). So J(RH) = JH ⊆ J(RG) by Lemma 4.4. Hence, α
semi-tripotent in RH implies that α is semi-tripotent in RG. ∎

Lemma 4.6 If R is a semi-tripotent ringwith 3 ∈ J(R) andG is a locally ûnite 3-group,
then RG is semi-tripotent.

Proof By [18, Lemma 2], ∆(RG) ⊆ J(RG). As RG/∆(RG) ≅ R is semi-tripotent,
idempotents li�modulo J in R byheorem 3.5, andmoreover RG/J(RG) has identity
x3 = x. By [14, Proposition 1.5], R is a clean ring, i.e., every element is a sum of an
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idempotent and a unit. Hence, by [18,heorem 4], RG is a clean ring, so idempotent
li� modulo J(RG) in RG. Hence, RG is semi-tripotent by heorem 3.5. ∎

A group is said to be nilpotent if it has a central series.

heorem 4.7 Let R be a ring and G be a locally ûnite, nilpotent group. hen RG is
semi-tripotent if and only if R is semi-tripotent and one of the following holds:
(1) 2 ∈ J(R) and G is a 2-group.
(2) 3 ∈ J(R) and G is a direct product of a group of exponent 2 and a 3-group.
(3) 2 ∉ J(R) and 3 ∉ J(R), and G is a group of exponent 2.

Proof (⇒). It is known that every locally ûnite nilpotent group is a direct product
of its p-subgroups. So G is a direct product of p-groups Gp where p runs over all
primes. Since RG is semi-tripotent, RGp is also semi-tripotent for each p and R is
semi-tripotent. So, by heorem 3.5, R/J = A× B, where A is Boolean and B is zero or
a subdirect product of Z3’s.

If 2 ∈ J(R), then G is a 2-group by Lemma 4.1.
If 3 ∈ J(R), then either p = 3 or p = 2withG2 a group of exponent 2 by Lemma 4.2.

So G is a direct product of a group of exponent 2 and a 3-group.
If 2 ∉ J(R) and 3 ∉ J(R), then 2 /= 0 in R/J and 3 /= 0 in R/J. So A /= 0 and B /= 0.

As images of RG, AG and BG are semi-tripotent. Since 2 = 0 in A, G is a 2-group by
Lemma 4.1. As 3 = 0 in B, G must be of exponent 2 by Lemma 4.2.

(⇐). Suppose that R is semi-tripotent. If (1) holds, then R is semi-boolean by
Corollary 3.6. So RG is semi-boolean (and hence semi-tripotent) by [9,heorem4.4].

If (2) holds, then G = H1 × H2, where H1 is a group of exponent 2 and H2 is a
3-group. So RG ≅ (RH2)H1. By Lemma 4.6, RH2 is semi-tripotent, and so (RH2)H1
is semi-tripotent by Lemma 4.5.

Suppose that (3) holds. As R is semi-tripotent, R/J = (X/J)⊕(Y/J),where X/J is
Boolean and Y/J is zero or a subdirect product of Z3’s. As idempotents li� modulo J,
there exist e2 = e ∈ X and f 2 = f ∈ Y such that e + f = 1, X/J = (eRe + J)/J and
Y/J = ( f R f + J)/J. So, R = eRe + f R f + J, and hence RG = (eRe)G + ( f R f )G + JG.
Moreover, byCorollary 2.8 eRe and f R f are semi-tripotent. So, byCorollary 3.6, eRe
is semi-boolean.

If α ∈ RG, write α = y + z + w where y ∈ (eRe)G, z ∈ ( f R f )G and w ∈ JG.
Write y = ∑ a i g i where a i ∈ eRe and g i ∈ G for each i. As 2 = 0 in eRe/eJe,
2e ∈ eJe, so (e(1+ g i))

2 = e(1+ 2g i + g2
i ) = e(2+ 2g i) = 2e(1+ g i) ∈ (eJe)G. Hence

e(1+g i) ∈ (eJe)G ⊆ JG, as e(1+g i) is central in (eRe)G (for all i). hus, y = ∑ a i g i+
∑ a i + (−∑ a i) = ∑ a i e(1+ g i)+ (−∑ a i), where∑ a i e(1+ g i) ∈ JG. As eRe is semi-
boolean,write −∑ a i = j1+h1 where j1 ∈ eJe ⊆ J and h2

1 = h1 ∈ eRe. So j1 ∈ J(RG) by
Lemma 4.5. As 3 ∈ J( f R f ), ( f R f )G is semi-tripotent by Lemma 4.5. So z = j2 + h2

where j2 ∈ J(( f R f )G) and h3
2 = h2 ∈ ( f R f )G. As 3 = 0 in f R f / f J f and f R f / f J f

has identity x3 = x, ( f R f )G/( f J f )G ≅ ( f R f / f J f )G is semi-primitive (indeed,
commutative vonNeumann regular, by [4,heorem 3]). It follows that J(( f R f )G) ⊆
( f J f )G ⊆ J(RG). So j2 ∈ J(RG). Let β = ∑ a i e(1+ g i)+ j1 + j2 +w and γ = h1 + h2.
hen β ∈ J(RG). As h1h2 = h2h1 = 0, γ3 = h3

1 + h3
2 = h1 + h2 = γ. So α = β + γ is

semi-tripotent in RG. ∎
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heorem 4.8 Let R be a ring and G be an abelian group. hen RG is semi-tripotent
if and only if R is semi-tripotent and one of the following holds:
(1) 2 ∈ J(R) and G is a 2-group.
(2) 3 ∈ J(R) and G is a direct product of a group of exponent 2 and a 3-group.
(3) 2 ∉ J(R) and 3 ∉ J(R), and G is a group of exponent 2.

Proof (⇒). By heorem 4.7, it suõces to show that G is torsion. As RG is semi-
tripotent, R andhenceR/J(R) are semi-tripotent. So, byheorem 3.5, R/J(R) = A×B,
where A is Boolean and B is zero or a subdirect product of Z3’s.

If 2 ∈ J(R), then G is a 2-group by Lemma 4.1.
If 3 ∈ J(R), then 3 = 0 in R/J(R), so A = 0. As Z3 is an image of R/J(R), Z3G is

an image of RG and hence it is semi-tripotent. Assume that G is not torsion. hen
G/T(G) is non-trivial torsion-free where T(G) is the torsion subgroup of G, and
Z3(G/T(G)) is semi-tripotent (being an image of Z3G). So we can assume that G
is torsion-free. If G has rank greater than 1, then G has a torsion-free quotient G

′

of
rank 1. Since Z3G

′

is semi-tripotent again, we can assume that G is of rank 1. So G is
isomorphic to a subgroup of (Q,+). Take g ∈ G such that g−1 /= g. Since g + g−1 is
semi-tripotent in Z3G, there exist j ∈ J(Z3G) and b3 = b ∈ Z3G such that g + g−1 =
j + b. here exists a ûnitely generated subgroup G1 of G such that g , j, b, (1 + j)−1 ∈
Z3G1. Because every ûnitely generated subgroup of (Q,+) is cyclic,G1 is cyclic. Write
G1 = ⟨h⟩. hen g = hk , g−1 = h−k for some positive integer k. here is a natural
isomorphismZ3⟨h⟩ ≅ Z3[x , x−1]with hk+h−k ←→ xk+x−k . As hk+h−k−b+1 = 1+ j
is a unit in Z3⟨h⟩, xk + x−k − f + 1 is a unit in Z3[x , x−1], where f 3 = f ∈ Z3[x , x−1].
But this is impossible because the tripotents of Z3[x , x−1] are in Z3 and the units of
Z3[x , x−1] are in {ax i ∶ 0 /= a ∈ Z3 , i ∈ Z}. he contradiction shows that G is torsion.

If 2 /∈ J(R) and 3 /∈ J(R), then 2 /= 0 and 3 /= 0 in R/J(R), so A /= 0 and B /= 0. As
an image of RG, AG is semi-tripotent. As 2 = 0 in A, G is a 2-group by Lemma 4.1.
As BG is semi-tripotent and 3 = 0 in B, G is a group of exponent 2 by Lemma 4.2.

(⇐). his follows from heorem 4.7. ∎
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