Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:09:12.804Z Has data issue: false hasContentIssue false

On Vector-Valued Lipschitz Function Spaces

Published online by Cambridge University Press:  20 November 2018

Pablo Galindo*
Affiliation:
AVDA. Blasco Ibañez 119 B-l 46022. Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is devoted to obtaining sequence space representations of spaces of vector-valued Ck-functions defined on an open subset, Ω, of ℝn, whose kth derivatives satisfy a Lipschitz condition on compact subsets of Ω.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 01

References

1. Bonet, J., Representations de los espacios OM(E)yDLp(E), Collect. Math. 33(1) (1982), pp. 2340.Google Scholar
2. Bonet, J., Countable neighbourhood property and tensor products, Proc. Edinburgh Math. Soc. 28 (1985), pp. 207215.Google Scholar
3. Bonic, R., Frampton, J., and Tromba, A., A-manifolds, J. Functional Anal. 3 (1969), pp. 310—320.Google Scholar
4. Ciesielski, Z., On the isomorphism of the spaces H and m, Bull Acad. Polon Sci, 8(4) (1960), pp. 217222.Google Scholar
5. Defant, A. and Govaerts, W., Tensor products and spaces of vector-valued continuous functions, (to appear in Manuscripta Math.).Google Scholar
6. Frampton, J. and Tromba, A., On the classification of spaces of Hölder continuous functions, J. Functional Anal. 10 (1972), pp. 336345.Google Scholar
7. Galindo, P., Espacios defunciones de clase Ck con valores vectoriales, Tesis doctoral, Valencia, 1983.Google Scholar
8. Garnir, H., de Wilde, M. and Schmets, J., Analyse fonctionelle. Tome I, Birkhäuser Verlag, Basel and Stuttgart.Google Scholar
9. Glaeser, G., Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), pp. 1 — 125.Google Scholar
10. Horvath, J., Topological vector spaces and distributions, Addison Wesley Publ. Co., Reading Massachusetts, 1966.Google Scholar
11. Kaballo, W., Lifting sätze für Vektorfunktionen und (∊L)-Raume, J. fur reine angew. Math. 309 (1979), pp. 5585.Google Scholar
12. Kaballo, W., Lifting theorems for vector valued functions and the e-tensor product, Bierstedt, K.D., and Fuchsteiner, B. (editors), Functional Analysis: Surveys and Recent Results, 1977, pp. 149165.Google Scholar
13. Köthe, G., Topological vector spaces I-II, Springer, Berlin, 1969-1980.Google Scholar
14. Pietsch, A., Nuclear locally convex spaces, Springer, Berlin, 1972.Google Scholar
15. Valdivia, M., Topics in locally convex spaces, Math. Studies 67. North Holland, 1982.Google Scholar
16. Wulbert, D.E, Representations of the spaces of Lipschitz functions, J. Functional Anal. 15 (1974), pp. 4555.Google Scholar