Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:01:40.512Z Has data issue: false hasContentIssue false

On the Theorems of Borsuk-Ulam and Ljusternik-Schnirelmann-Borsuk

Published online by Cambridge University Press:  20 November 2018

H. Steinlein*
Affiliation:
Mathematisches InstitutUniversität München Theresienstr. 39 D-8000 Mùnchen 2, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p ≥ 3 be a prime number and m a positive integer, and let S be the sphere S(m-1)(p-1)-1. Let f:SS be a map without fixed points and with fp = idS. We show that there exists an h: S→ℝm with h(x) ≠ h(f(x)) for all xS. From this we conclude that there exists a closed cover U1,…, U4m of S with Uinf(Ui) = Ø for i = 1,…, 4m. We apply these results to Borsuk-Ulam and Ljusternik-Schnirelmann-Borsuk theorems in the framework of the sectional category and to a problem in asymptotic fixed point theory.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

1. Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphdre, Fund. Math. 20 (1933), 177190.Google Scholar
2. Cohen, F. and Lusk, E. L., Coincidence point results for spaces with free ℤp-actions, Proc. Amer. Math. Soc. 49 (1975), 245252.Google Scholar
3. James, I. M., On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331348.Google Scholar
4. Krasnosel’skiĭ, M. A., On special coverings of a finite-dimensional sphere, Doklady Akad. Nauk SSSR 103 (1955), 961964. (Russian).Google Scholar
5. Ljusternik, L. and Schnirelmann, L., Topological methods in variational problems, Issledowatel’skiĭ Institut Mathematiki i Mechaniki pri J.M.G.U., Moscow, 1930. (Russian)Google Scholar
6. Lusk, E. L., The mod p Smith index and a generalized Borsuk-Ulam theorem, Michigan Math. J. 22 (1975), 151160.Google Scholar
7. Schupp, C., Verallgemeinerungen des Borsuk-Ulamschen Koinzidensatzes, Ph. D. Dissertation, University of Munich, 1981.Google Scholar
8. Steinlein, H., Borsuk-Ulam Sätze und Abbildungen mit kompakten Iterierten, Dissertationes Math. (Rozprawy Mat.) 177 (1980), 116 pp.Google Scholar
9. Steinlein, H., Some abstract generalizations of the Ljustemik-Schnirelmann-Borsuk covering theorem, Pacific J. Math. 83 (1979), 285296.Google Scholar
10. Švarc, A. S., Some estimates of the genus of a topological space in the sense of KrasnoseVskiĭ, Uspehi Mat. Nauk 12 (1957), no. 4 (76), 209214 (Russian).Google Scholar
11. Švarc, A. S., The genus of a fiber space, Trudy Moskov. Mat. Obšč. 10 (1961), 217272 and 11 (1962), 99–126; (Russian), English translation in Amer. Math. Soc, Translat., II. Ser. 55 (1966), 49–140.Google Scholar