Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T12:45:48.800Z Has data issue: false hasContentIssue false

On the General Theory of Differentiable Manifolds with Almost Tangent Structure

Published online by Cambridge University Press:  20 November 2018

Hermes A. Eliopoulos*
Affiliation:
University of Windsor
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some of the most important G-Structures of the first kind [1] are those defined by linear operators satisfying algebraic relations. If the linear operator J acting on the complexified space of a differentiable manifold V satisfies a relation of the form

where I is the identity operator, the manifold has an almost complex structure ([2] [3]). The structures defined by

are the almost product structures ([3] [4]).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Bernard, D., Sur la géométrie différentielle des G - structures. Ann. Inst. Fourier, Grenoble 10 (1960) pp. 153-273.Google Scholar
2. Lichnerowicz, A., Théorie globale des connexions et de groupes d1 holonomie. Cremonèse, 1955.Google Scholar
3. Lregrand, G., Étude d' une generalization des structures presque complexes sur les variétés differentiates. Thèse, Faculté des Sciences, Paris, 1958.Google Scholar
4. Spencer, D. C., Differentiate manifolds (Notes). Princeton University, 1954.Google Scholar
5. Eliopoulos, H. A., Structures presque tangents sur les variétés differentiables, C. R. Acad Sc, Paris, t. 255, pp. 1563-1565, 1962.Google Scholar
6. Mme Lehmann-Lejeune, J., Sur 1' integrabilité de certain G-structures, C. R. Acad. Se. Paris, t. 258, pp. 5326-5329, 1964.Google Scholar
7. Ehresmann, C., Les connections infinitesimales dans un éspace fibré differentiable, Colloque de Topologie, Bruxelles, 1950, pp. 29-55.Google Scholar
8. Frolicher, A. and Nijenhuis, A., Theory of vector-valued differential forms, Part I, K. Ned. Akad. Wet. Proc. Math. Sc. V. 59, pp. 338-359, 1956.Google Scholar
9. Eliopoulos, H. A., Compatibility of Euclidean and almost tangent structures, To appear in the Bulletin Acad. R. de Belgique, Classe Se. 1964, 11.Google Scholar