Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T12:42:06.432Z Has data issue: false hasContentIssue false

On Some New Generalizations of the Functional Equation of Cauchy

Published online by Cambridge University Press:  20 November 2018

P. Fischer
Affiliation:
Magar Tudományos Akadémia
Gy. Muszély
Affiliation:
Magar Tudományos Akadémia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Examining certain problems in physics M. Hosszu [l] obtained the functional equation

(1)

where x, y, f are real.

In another paper M. Hosszu [2] proved that the equation (1) is equivalent to the functional equation of Cauchy; i. e., to the equation

(1)

under the assumption that x is real and f is real and continuous.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Hosszu, M., Észrevételek a relativitáselmèleti időfogalom Reichenbach-féleèrtelmezéséhez, NME Magyarnyelvu Kózleményi Miskolc. (1966), pages 223-233.Google Scholar
2. Hosszu, M., Egy alternativ függvényegyenletről, Mat. Lapok 14 (1966), pages 98-102. 22Google Scholar
3. Swiatak, H., On the equation Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Nr II. Prace Matematyczne. Zeszyt 10 (1966), pages 97-104.Google Scholar
4. Aczél, J., Fladt, K., Hosszu, M., Losunge neiner mit dem Doppelverhältnis zusammenhängender Funktionalgleichung, MTA Mat. Kut. Int. Közl. 7 A (1966), pages 335-352.Google Scholar
5. Vincze, E., Alternativ függvényegyenletek megoldásairól, Ma. Lapok, 14 (1966), pages 179-195.Google Scholar
6. Vincze, E., Beitrag zur Thèorie der Cauchyschen Funktional-gleichungen, Arch. Math., 15 (1966), pages 132-135.Google Scholar
7. Vincze, E., Über eine Verallgemeinerung der Cauchyschen Funktionalgleichung, Funkciala. Ekvacioj, 6 (1966), pages 55-62.Google Scholar
8. Fischer-Gy, P.. Muszely, A Cauchy-fèle függvényegyenletek bizonyos tipusu általánositásai, Mat. Lapok, 1. (1966) pages 67-75.Google Scholar
9. Blumberg, L. H., On convex functions, Trans. Amer. Math. Soc. 20 (1911), pages 40-44.Google Scholar
10. Sierpinski, W., Sur les fonctions convexes mesurables, Fund. Math. 1(1922), pages 125-129.Google Scholar
11. Ostrowski, L. A., Über die Funktionalgleichung der Exponential-funktion und verwandte Funktionalgleichungen, Jahresb. Deutschen Math. Ver. 38 (1922) pages 54-62.Google Scholar