Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T15:17:32.392Z Has data issue: false hasContentIssue false

On 2-Summing Operators

Published online by Cambridge University Press:  20 November 2018

Richard Duncan*
Affiliation:
Département de Mathématiques, Université de Montréal, Montréal, Québec, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note all Banach space are assumed to be real and separable and their norms will be denoted by || ||. The canonical bilinear form between a Banach space B and its topological dual B′ will be denoted by 〈x, y〉, xB, yB′.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Gelfand, I. M. and Vilenkin, M., Les Distributions, (Vol. IV), Dunod, Paris, 1968.Google Scholar
2. Lepingle, D., Applications p-sommantes; inégalité de Pietsch; factorization. Séminaire L. Schwartz, 1969-1970, Exposé no. 7.Google Scholar
3. Martin, J., Une caractérisation des opérateurs de Hilbert-Schmidt, Séminaire L. Schwartz, 1969-1970, Exposé no. 8.Google Scholar
4. Pietsch, A., Absolut p-summierende Abbildunger in normierter Räumen, Studia Math. 28 (1967) 333-353.Google Scholar
5. Pietsch, A., Hilbert-Schmidt Abbildungen in Banach Räumen, Math. Nachr. 37 (1968) 237-245.Google Scholar
6. Pietsch, A., p-nukleare undp-integrale Abbildungen, Studia Math. 33 (1969) 19-62.Google Scholar
7. Yoshida, K., Functional Analysis, Springer-Verlag, New York, 1965.Google Scholar