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ON 2-SUMMING OPERATORS 

BY 

RICHARD DUNCAN^ 

In this note all Banach space are assumed to be real and separable and their 
norms will be denoted by || ||. The canonical bilinear form between a Banach space 
B and its topological dual B' will be denoted by (x, y), x e B, y e B'. Recall that 
if B1 and B2 are Banach spaces a linear operator A:BX~>B2 is said to be/?-summing 
(0< jp<oo) if there is a constant p>0 such that for any finite family xl9 x29 . . . , xn 

in Bx we have 

( \l/3> / \l/2> 

i M x j r ) < P s u p [l\(xi9y)Y\ 
i I veUi \ i J 

where Ux is the unit ball in B[. The fundamental result of Pietsch [4] states that A 
is/7-summing if and only if there is a finite Borel measure v on Ux (here Ux has the 
weak* topology and is thereforeVompact) such that 

\\Ax\\*^\ \{x,y)\*dv(y) 
JUi 

for all x eBx. If A is p-summing and 0<p<q<co then A is ^-summing [2]. In 
the case A:HX-+H2 where Hx and H2 are Hilbert spaces then A is 2-summing if 
and only if A is Hilbert-Schmidt and in this case A isp-summing for all 0</?<oo 
[3]. The operator A can then be written in the form 

00 

A* = 2 *n(*> Xn)y<n 
1 

where {xn} and {yn} are orthonormal bases in Hx and H2 respectively, and {An} 
is a sequence of positive numbers such that 2n ^n<°° [1, Chap. 1]. 

Setting zn~lnxn we see that Ax— 2W (x, zn)yn where 

sup2G\»yf = sup||j||2 = i < co 
and 

2 (x, *nf = 2 4K*, x j 2 = f (x, yf dv(y) 
n n JUi 

where v>0 is the finite Borel measure on Ux given by ]Tn ^w^n5 ôx =unit mass at 
xn. We give now an analogous representation for 2-summing operators. 

THEOREM 1. A linear operator A:B1-+B2 is 2-summing if and only if A can be 
written in the form Ax= 2n (*> jOzn> tne convergence being in B2. The sequence 
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{zn}aB2 satisfies supyel7a ]Tn i
zn> j ) 2 <oo where U2 is the unit ball in B2 and the 

sequence {yn}^B[ has the property that 

2<*,y»>1 = (' (x,y)2dv(y) 
n JUi 

for all x E B±. Here v^O is a finite Borel measure on Ux. 

Proof. If A is 2-summing, then 

\\Ax\\*<f (x,yfdv(y) 

for some finite Radon measure ^>0 on [/^ 
For each x e Bl9 we tetfx be the equivalence class in L\v) of the function y-> 

(x,y) defined on Ux. Denote by B\ the linear subspace of L2(v) defined by i?* = 
{fx:xe B±}. If Hv is the closure of B1 in L2(v)9 then Hv is a Hilbert space with 
inner product 

( / i , / 2 ) = f khdv 

and norm | / l i = ( / , / ) 1 / a . Consider now the map A* defined on B\ with values in 
B2 by A*fx=Ax. Then A* is a linear and well-defined: iffx̂ =fx̂  in L2(v)9 i.e., 

\fxx~~fx2\l ~ Ifxx-Xzll = Oj 

then 

so that A*fXi=A*fX2. Moreover, 

U*fJ2 = \\Ax\\2 < f <x, y? dv(y) = | / J 2 

so that A* is continuous from i?* into B2. Since .6* is dense in Hv the map A* 
extends to a continuous linear map A*:HV->B2. 

Note also that Hv is a separable Hilbert space since Bx is separable and is a dense 
subset of Hv. Therefore every dense linear manifold (in particular i?*) contains a 
countable orthonormal basis by the Gramm-Schmidt process. Let {fx }n be such a 
basis. Then every/G Hy can be represented uniquely in the form 

J 2* \J>Jxn)Jxn'> 
n 

and since A* is continuous, 

A J = 2*U> JxJA Jxn9 
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the convergence being in B2. Set zn=A%n EB2. If A*':B2->Hy is the adjoint 
map of A* and y e B2, then 

so that 

I <z„, V? = 1 (A%n, yf = 2 (/„, 4*»2 = \A*'y\\ 

sup 2 <z„, y>2 = sup \A*'\\ = M*'||2 < oo 
yeU2 n veUi 

since A*, hence y4*' is continuous. Note also that the map 

* -* (/*>/*„) = (x, y) (xn9 y) dv(y) 

is a continuous linear form on B± so there exists yn e B2 such that (fX9fz ) = 
(x , j n ) for all x in i?l5 «=0 , 1 , 2 , . . . . Finally, if xeBx then 

I (x, yn? = 2 (/ . , /J2 = I/JÏ = f (x, y)2 dv(y) 
n n JUi 

< OO. 

Thus if xeBl9 then Ax=A*fx=
>][ (x,yn)zn where the sequences {yn} and {zn} 

have the properties announced in the theorem. We turn now to the sufficiency. 
Suppose A:BX~>B2 has the form 

Ax = 2 <*> jO zn 

where the sequences {yn} and {z j and the measure v>0 satisfy the conditions 
stated in the theorem. Let 

p = sup 2 <zn. J)2 

which is finite by assumption. Let x e Bx. Then 

\\Ax\\* = sup \(Ax, y)\2 = sup 2 <*> yn)(Zn, J7) 
veU2 VBU% \ n \ 

< sup [ f e <*, y J] ( l (zn, y)2)] <PI(X, yn? = /> f <x. >>>2 «My). 

Thus 4̂ is 2-summing and the proof of the theorem is complete. 
We say that a sequence {yn}czBr is strongly 2-summable if 

00 

lim sup 2 <*> yn? = 0. 
ra-*oo ||a?||<lw=ra 

COROLLARY. Let Bx be a separable Banach space such that the unit ball in B\ 
is metrizable in the weak* topology (e.g. if B[ is separable or B1 reflexive). Let 
A:BX->B2 be p-summing (0<p<2). Then A can be written in the form 

Ax = 2 (x, yn)xn 
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where {xn}aB2 is 2-summable and {yn}czB[ is strongly 2-summable. Moreover, 

m 

AmX = £ \X9 yn/Xn ~ > AX 

uniformly in | |x | |<l . 

Proof. Let K be the unit ball in B'[. If A is /?-summing (0</?<Ç2) then A is 2-
summing, and using the notation in the proof of Theorem 1 we have that for each 
x e B'[ the function y-*{x9y) defined on U1 is in Hv. Indeed, since the unit ball 
in Bx is weak* dense in K [7, p. 114] and K is assumed to be metrizable, for each 
xeB'i we can find a bounded sequence {xn}czB1 such that (xn9y)~>{x9y) for 
all y G U1 and therefore xn-+x in Hv. It follows as in the proof of Theorem 1 that 
for each x e Bl9 

Ax = 2 (x, yn)Xn 
n 

where the sequence {xn}aB2 is 2-summable and the sequence {y^^B^ satisfies 

I(x,yn)
2=\ (x,y)2dv(y) 

n JUx 

for each x e B'[. Now Kis compact in the weak* topology and for each n the func­
tion x-*(x, yn) is a continuous function on K which we denote by/n(x). Similarly, 
the function 

x-+\ (x, yf My) = g(x) 
JUi 

is continuous on K as K is metrizable. Since 

it follows from Dini's theorem that the convergence is uniform. Hence 

00 00 

lim sup 2 <*> ynf < lim sup £ /*(*) = 0 
m-+oo ||aj||<l n=m m-*ao xeK n=m 

and the sequence {yn} is strongly 2-summable. Finally, note that 

1 00 12 

2 (x,yn)(xn9y)\ 
n=m I 

^ sup ( I (x, yn)
2) ( f (x„ y)2) £ Af( | <X, ynA 

||l/||<l \n=«i / \n—m I \n=m / 
where 

00 

M = sup ^(xn9yf < 00. 
Therefore 

m - ^ w | | 2 = sup Mx- ,4 w x | | a < M sup ( I (x, j , ) 2 ) - 0 
IN|<1 ||«||<1 \n=m / 

as m->oo since {yn} is strongly 2-summable, and the proof is complete. 
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Denote by U[ the locally compact Hausdorff space £^{0}. Let ju>0 be a Radon 
measure on U[ (i.e., a Borel measure /ti on V'x such that p,(K)<co for all compact 
Ka UI), having the property that 

(x, yf d/i(y) < oo 
JUi' 

for each x e BX. IÏA\B1-^B2 is a linear operator, we say that A is 2-integral bounded 
if there is a Radon measure JU as above such that 

\\Ax\\2<f (x,y)2df*(y) 
JUi' 

for all x e Bv This is a natural generalization of a 2-summing operator. The fol­
lowing theorem characterizes 2-integral bounded operators. 

THEOREM 2. An operator A:BX-+B2 is 2-integral bounded if and only if there is a 
sequence {yn}^Bi such that 

Uxe<Z(x,yn?<«> 
for all x e Bx. Moreover, every 2-integral bounded operator A:B1-^B2 can be written 
in the form 

00 

AX = J (*> yn)*n 
n=l 

where {XU}ŒB2 is 2-summable and {yn}c:B[ satisfies 

I(x,yn?<C\\xf 
n 

for all x e Bv Here C > 0 is a finite constant. 

Proof. For x e Bx denote by fx(y) the function y-+(x9y) on U[. We show first 
that if /bt is a Radon measure on U'x satisfying 

j 
JUi 

(x,y)*dfl(y)=ft(fl)< co 
L' 

for all x eBl9 then there exists a finite constant C^O such that ju(fl)<C \\x\\z 

for all x e Bx. Let H^ be the closure of the linear subspace {fx:x e Bx} in L2(Ui, fi). 
Then H^ is a separable Hilbert space and the map x-*fx is linear and everywhere 
defined from Bx into H^. If xn->x in Bx and/^ -*/in H^ then there is a subsequence 
{n'}a{n} such t h a t / ^ - ^ / a . e . /*. Bu t / V ( j )= (x w , , j> converges to <*, j ) = /«(» 
everywhere. Hence^.(j)=/(j) a.e. /LC, and therefore/^/à, in H^. This shows that the 
map x-+fx has a closed graph and is therefore continuous. Hence there is a finite 
C > 0 such that p(fl)<C \\x\\2 for all xeBv Suppose now \\Ax\\2£/i(fl) for all 
x e Bx. Let {en}n be an orthonormal basis for H^ so that 

f {x,yfdM(y) = /,(fl) = Z(fx,eny 
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from Parseval's equality where ( , ) is the inner product in H^. But for each n, 
\(fx^n)\

2<(fxJx)(en,en)=^(fx)<C\\x\\2 so that the map x-+(fx, en)=(x,yn) 
for some yn e B[. Thus 

Ux\\2<v(fl) = Z(x,yn)
2<C\\xf 

n 

for all x e Bv Conversely, suppose 

ll^ll'^2<x,^>8<» 
n 

for all xeB[ where {yn}EB^ We may choose positive constants An>0 with 
An |0 such that X = A w j n satisfies y'n e U'x and ||Xl|->0 as n-+oo. Denoting by p 
the Radon measure 

00 

n=l 

on U[ (ôy ,=unit mass at {y'n}) we have 

Uxf <> I (x, yn? = 2 K\x, y'n? = Kfl) 
n 

and A is 2-integral bounded. This proves the first sentence in Theorem 2. Repeating 
the same proof as in Theorem 1 yields a representation of A in the form 

Ax = 2 (x, yn)xn 

where {xn} c i?2 is 2-summable and 

2(x,y„)2 = Kfl)<c\\x\\\ 
This completes the proof of Theorem 2. 

REMARK. It is clear that the results obtained in this paper hold equally well for 
complex Banach spaces: one has only to replace expressions of the form ( )2 

by | |2 in the theorems and proofs. 
The author would like to thank the referee for many helpful suggestions in 

clarifying the presentation of the paper. 
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