ON 2-SUMMING OPERATORS

BY RICHARD DUNCAN⁽¹⁾

In this note all Banach space are assumed to be real and separable and their norms will be denoted by $\| \|$. The canonical bilinear form between a Banach space B and its topological dual B' will be denoted by $\langle x, y \rangle$, $x \in B$, $y \in B'$. Recall that if B_1 and B_2 are Banach spaces a linear operator $A: B_1 \rightarrow B_2$ is said to be p-summing (0 if there is a constant <math>p > 0 such that for any finite family x_1, x_2, \ldots, x_n in B_1 we have

$$\left(\sum_{i} \|Ax_{i}\|^{p}\right)^{1/p} \leq \rho \sup_{y \in U_{1}} \left(\sum_{i} |\langle x_{i}, y \rangle|^{p}\right)^{1/p}$$

where U_1 is the unit ball in B'_1 . The fundamental result of Pietsch [4] states that A is p-summing if and only if there is a finite Borel measure v on U_1 (here U_1 has the weak* topology and is therefore compact) such that

$$||Ax||^p \le \int_{U_1} |\langle x, y \rangle|^p \, d\nu(y)$$

for all $x \in B_1$. If A is p-summing and $0 then A is q-summing [2]. In the case <math>A: H_1 \to H_2$ where H_1 and H_2 are Hilbert spaces then A is 2-summing if and only if A is Hilbert-Schmidt and in this case A is p-summing for all 0 [3]. The operator A can then be written in the form

$$Ax = \sum_{1}^{\infty} \lambda_{n}(x, x_{n}) y_{n}$$

where $\{x_n\}$ and $\{y_n\}$ are orthonormal bases in H_1 and H_2 respectively, and $\{\lambda_n\}$ is a sequence of positive numbers such that $\sum_n \lambda_n^2 < \infty$ [1, Chap. 1].

Setting $z_n = \lambda_n x_n$ we see that $Ax = \sum_n (x, z_n) y_n$ where

$$\sup_{y \in U_2} \sum (y_n, y)^2 = \sup_{y \in U_2} ||y||^2 = 1 < \infty$$

and

$$\sum_{n} (x, z_{n})^{2} = \sum_{n} \lambda_{n}^{2} (x, x_{n})^{2} = \int_{U_{1}} (x, y)^{2} dv(y)$$

where $v \ge 0$ is the finite Borel measure on U_1 given by $\sum_n \lambda_n^2 \delta_{x_n}$, δ_{x_n} = unit mass at x_n . We give now an analogous representation for 2-summing operators.

THEOREM 1. A linear operator $A: B_1 \rightarrow B_2$ is 2-summing if and only if A can be written in the form $Ax = \sum_n \langle x, y_n \rangle z_n$, the convergence being in B_2 . The sequence

Received by the editors September 22, 1972 and, in revised form, February 21, 1973.
(1) Research supported by NRC Grant No. A-7840.

 $\{z_n\}\subset B_2 \text{ satisfies } \sup_{y\in U_2}\sum_n\langle z_n,y\rangle^2<\infty \text{ where } U_2 \text{ is the unit ball in } B_2' \text{ and the sequence } \{y_n\}\subset B_1' \text{ has the property that}$

$$\sum_{n} \langle x, y_n \rangle^2 = \int_{U_1} \langle x, y \rangle^2 \, d\nu(y)$$

for all $x \in B_1$. Here $v \ge 0$ is a finite Borel measure on U_1 .

Proof. If A is 2-summing, then

$$||Ax||^2 \le \int_{U_1} \langle x, y \rangle^2 \, d\nu(y)$$

for some finite Radon measure $v \ge 0$ on U_1 .

For each $x \in B_1$, we let f_x be the equivalence class in $L^2(v)$ of the function $y \to \langle x, y \rangle$ defined on U_1 . Denote by B_1^* the linear subspace of $L^2(v)$ defined by $B_1^* = \{f_x : x \in B_1\}$. If H_{ν} is the closure of B_1 in $L^2(v)$, then H_{ν} is a Hilbert space with inner product

$$(f_1, f_2) = \int_{U_1} f_1 f_2 \, d\nu$$

and norm $|f|_1 = (f, f)^{1/2}$. Consider now the map A^* defined on B_1^* with values in B_2 by $A^*f_x = Ax$. Then A^* is a linear and well-defined: if $f_{x_1} = f_{x_2}$ in $L^2(v)$, i.e.,

$$|f_{x_1} - f_{x_2}|_1 = |f_{x_1 - x_2}|_1 = 0,$$

then

$$\|A^*f_{x_1} - A^*f_{x_2}\|^2 = \|Ax_1 - Ax_2\|^2 = \|A(x_1 - x_2)\|^2 \le \int_{U_1} \langle x_1 - x_2, y \rangle^2 d\nu(y) = \|f_{x_1 - x_2}\|_1^2 = 0$$

so that $A * f_{x_1} = A * f_{x_2}$. Moreover,

$$||A^*f_x||^2 = ||Ax||^2 \le \int \langle x, y \rangle^2 \, d\nu(y) = |f_x|_1^2$$

so that A^* is continuous from B_1^* into B_2 . Since B_1^* is dense in H_p , the map A^* extends to a continuous linear map $A^*: H_p \rightarrow B_2$.

Note also that H_r is a separable Hilbert space since B_1 is separable and is a dense subset of H_r . Therefore every dense linear manifold (in particular B_1^*) contains a countable orthonormal basis by the Gramm-Schmidt process. Let $\{f_{x_n}\}_n$ be such a basis. Then every $f \in H_r$ can be represented uniquely in the form

$$f = \sum_{n} (f, f_{x_n}) f_{x_n},$$

and since A^* is continuous,

$$A^*f = \sum_{n} (f, f_{x_n}) A^*f_{x_n},$$

the convergence being in B_2 . Set $z_n = A^* f_{x_n} \in B_2$. If $A^{*'}: B_2' \to H_p$ is the adjoint map of A^* and $y \in B_2'$, then

$$\sum_{n} \langle z_{n}, y \rangle^{2} = \sum_{n} \langle A^{*}f_{x_{n}}, y \rangle^{2} = \sum_{n} (f_{x_{n}}, A^{*'}y)^{2} = |A^{*'}y|_{1}^{2}$$

so that

$$\sup_{y \in U_2} \sum_n \langle z_n, y \rangle^2 = \sup_{y \in U_2} |A^{*\prime}|_1^2 = ||A^{*\prime}||^2 < \infty$$

since A^* , hence $A^{*'}$ is continuous. Note also that the map

$$x \to (f_x, f_{x_n}) = \int_{U_1} \langle x, y \rangle \langle x_n, y \rangle \, d\nu(y)$$

is a continuous linear form on B_1 so there exists $y_n \in B_2'$ such that $(f_x, f_{x_n}) = \langle x, y_n \rangle$ for all x in B_1 , $n = 0, 1, 2, \ldots$ Finally, if $x \in B_1$ then

$$\sum_{n} \langle x, y_{n} \rangle^{2} = \sum_{n} (f_{x}, f_{x_{n}})^{2} = |f_{x}|_{1}^{2} = \int_{U_{1}} \langle x, y \rangle^{2} d\nu(y) < \infty.$$

Thus if $x \in B_1$, then $Ax = A^*f_x = \sum \langle x, y_n \rangle z_n$ where the sequences $\{y_n\}$ and $\{z_n\}$ have the properties announced in the theorem. We turn now to the sufficiency. Suppose $A: B_1 \to B_2$ has the form

$$Ax = \sum_{n} \langle x, y_n \rangle z_n$$

where the sequences $\{y_n\}$ and $\{z_n\}$ and the measure $v \ge 0$ satisfy the conditions stated in the theorem. Let

$$\rho = \sup_{y \in U_n} \sum \langle z_n, y \rangle^2$$

which is finite by assumption. Let $x \in B_1$. Then

$$||Ax||^{2} = \sup_{y \in U_{2}} |\langle Ax, y \rangle|^{2} = \sup_{y \in U_{2}} \left| \sum_{n} \langle x, y_{n} \rangle \langle z_{n}, y \rangle \right|^{2}$$

$$\leq \sup_{y \in U_{2}} \left[\left(\sum_{n} \langle x, y_{n} \rangle^{2} \right) \left(\sum_{n} \langle z_{n}, y \rangle^{2} \right) \right] \leq \rho \sum_{n} \langle x, y_{n} \rangle^{2} = \rho \int_{U_{1}} \langle x, y \rangle^{2} \, d\nu(y).$$

Thus A is 2-summing and the proof of the theorem is complete.

We say that a sequence $\{y_n\}\subset B'$ is strongly 2-summable if

$$\lim_{m\to\infty} \sup_{\|x\|\leq 1} \sum_{n=m}^{\infty} \langle x, y_n \rangle^2 = 0.$$

COROLLARY. Let B_1 be a separable Banach space such that the unit ball in B_1'' is metrizable in the weak* topology (e.g. if B_1' is separable or B_1 reflexive). Let $A: B_1 \rightarrow B_2$ be p-summing (0 . Then A can be written in the form

$$Ax = \sum_{n} \langle x, y_n \rangle x_n$$

where $\{x_n\}\subset B_2$ is 2-summable and $\{y_n\}\subset B_1'$ is strongly 2-summable. Moreover,

$$A_m x = \sum_{n=1}^m \langle x, y_n \rangle x_n \xrightarrow{m} Ax$$

uniformly in $||x|| \le 1$.

Proof. Let K be the unit ball in B_1'' . If A is p-summing (0 then <math>A is 2-summing, and using the notation in the proof of Theorem 1 we have that for each $x \in B_1''$ the function $y \to \langle x, y \rangle$ defined on U_1 is in H_p . Indeed, since the unit ball in B_1 is weak* dense in K [7, p. 114] and K is assumed to be metrizable, for each $x \in B_1''$ we can find a bounded sequence $\{x_n\} \subset B_1$ such that $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in U_1$ and therefore $x_n \to x$ in H_p . It follows as in the proof of Theorem 1 that for each $x \in B_1$,

$$Ax = \sum_{n} \langle x, y_n \rangle x_n$$

where the sequence $\{x_n\} \subset B_2$ is 2-summable and the sequence $\{y_n\} \subset B_1'$ satisfies

$$\sum_{n} \langle x, y_n \rangle^2 = \int_{U_1} \langle x, y \rangle^2 \, d\nu(y)$$

for each $x \in B_1''$. Now K is compact in the weak* topology and for each n the function $x \rightarrow \langle x, y_n \rangle$ is a continuous function on K which we denote by $f_n(x)$. Similarly, the function

$$x \to \int_{U_1} \langle x, y \rangle^2 d\nu(y) \equiv g(x)$$

is continuous on K as K is metrizable. Since

$$\sum_{k=1}^{n} \langle x, y_k \rangle^2 = \sum_{K=1}^{n} f_k^2(x) \uparrow g(x)$$

it follows from Dini's theorem that the convergence is uniform. Hence

$$\lim_{m \to \infty} \sup_{\|x\| \le 1} \sum_{n=m}^{\infty} \langle x, y_n \rangle^2 \le \lim_{m \to \infty} \sup_{x \in K} \sum_{n=m}^{\infty} f_n^2(x) = 0$$

and the sequence $\{y_n\}$ is strongly 2-summable. Finally, note that

$$||Ax - A_m x||^2 = \sup_{\|y\| \le 1} |\langle Ax, y \rangle - \langle A_m x, y \rangle|^2 = \sup_{\|y\| \le 1} \left| \sum_{n=m}^{\infty} \langle x, y_n \rangle \langle x_n, y \rangle \right|^2$$

$$\leq \sup_{\|y\| \le 1} \left(\sum_{n=m}^{\infty} \langle x, y_n \rangle^2 \right) \left(\sum_{n=m}^{\infty} \langle x_n, y \rangle^2 \right) \le M \left(\sum_{n=m}^{\infty} \langle x, y_n \rangle^2 \right)$$

where

$$M = \sup_{\|y\| \le 1} \sum_{n=1}^{\infty} \langle x_n, y \rangle^2 < \infty.$$

Therefore

$$||A - A_m||^2 = \sup_{||x|| \le 1} ||Ax - A_m x||^2 \le M \sup_{||x|| \le 1} \left(\sum_{n=m}^{\infty} \langle x, y_n \rangle^2 \right) \to 0$$

as $m\to\infty$ since $\{y_n\}$ is strongly 2-summable, and the proof is complete.

Denote by U_1' the locally compact Hausdorff space $U_1\setminus\{0\}$. Let $\mu\geq 0$ be a Radon measure on U_1' (i.e., a Borel measure μ on U_1' such that $\mu(K)<\infty$ for all compact $K\subset U_1'$), having the property that

$$\int_{U_1} \langle x, y \rangle^2 \, d\mu(y) < \infty$$

for each $x \in B_1$. If $A: B_1 \rightarrow B_2$ is a linear operator, we say that A is 2-integral bounded if there is a Radon measure μ as above such that

$$||Ax||^2 \le \int_{U,Y} \langle x, y \rangle^2 \, d\mu(y)$$

for all $x \in B_1$. This is a natural generalization of a 2-summing operator. The following theorem characterizes 2-integral bounded operators.

THEOREM 2. An operator $A: B_1 \rightarrow B_2$ is 2-integral bounded if and only if there is a sequence $\{y_n\} \subset B_1'$ such that

$$||Ax||^2 \le \sum \langle x, y_n \rangle^2 < \infty$$

for all $x \in B_1$. Moreover, every 2-integral bounded operator $A: B_1 \rightarrow B_2$ can be written in the form

$$Ax = \sum_{n=1}^{\infty} \langle x, y_n \rangle x_n$$

where $\{x_n\}\subset B_2$ is 2-summable and $\{y_n\}\subset B_1'$ satisfies

$$\sum_{n} \langle x, y_n \rangle^2 \le C \|x\|^2$$

for all $x \in B_1$. Here $C \ge 0$ is a finite constant.

Proof. For $x \in B_1$ denote by $f_x(y)$ the function $y \rightarrow \langle x, y \rangle$ on U_1' . We show first that if μ is a Radon measure on U_1' satisfying

$$\int_{U_1} \langle x, y \rangle^2 \, d\mu(y) = \mu(f_x^2) < \infty$$

for all $x \in B_1$, then there exists a finite constant $C \ge 0$ such that $\mu(f_x^2) \le C \|x\|^2$ for all $x \in B_1$. Let H_μ be the closure of the linear subspace $\{f_x : x \in B_1\}$ in $L^2(U_1', \mu)$. Then H_μ is a separable Hilbert space and the map $x \to f_x$ is linear and everywhere defined from B_1 into H_μ . If $x_n \to x$ in B_1 and $f_{x_n} \to f$ in H_μ , then there is a subsequence $\{n'\} \subset \{n\}$ such that $f_{x_n'} \to f$ a.e. μ . But $f_{x_n'}(y) = \langle x_{n'}, y \rangle$ converges to $\langle x, y \rangle = f_x(y)$ everywhere. Hence $f_x(y) = f(y)$ a.e. μ , and therefore $f = f_x$ in H_μ . This shows that the map $x \to f_x$ has a closed graph and is therefore continuous. Hence there is a finite $C \ge 0$ such that $\mu(f_x^2) \le C \|x\|^2$ for all $x \in B_1$. Suppose now $\|Ax\|^2 \le \mu(f_x^2)$ for all $x \in B_1$. Let $\{e_n\}_n$ be an orthonormal basis for H_μ so that

$$\int \langle x, y \rangle^2 d\mu(y) = \mu(f_x^2) = \sum_n (f_x, e_n)^2$$

3

from Parseval's equality where (,) is the inner product in H_{μ} . But for each n, $|(f_x, e_n)|^2 \le (f_x, f_x)(e_n, e_n) = \mu(f_x^2) \le C \|x\|^2$ so that the map $x \to (f_x, e_n) = \langle x, y_n \rangle$ for some $y_n \in B_1'$. Thus

$$||Ax||^2 \le \mu(f_x^2) = \sum_n \langle x, y_n \rangle^2 \le C ||x||^2$$

for all $x \in B_1$. Conversely, suppose

$$||Ax||^2 \le \sum_n \langle x, y_n \rangle^2 < \infty$$

for all $x \in B_1'$ where $\{y_n\} \in B_1'$. We may choose positive constants $\lambda_n > 0$ with $\lambda_n \downarrow 0$ such that $y_n' = \lambda_n y_n$ satisfies $y_n' \in U_1'$ and $||y_n'|| \to 0$ as $n \to \infty$. Denoting by μ the Radon measure

$$\sum_{n=1}^{\infty} \lambda_n^{-2} \delta_{y_n}$$

on U_1' (δ_{y_n} = unit mass at $\{y_n'\}$) we have

$$||Ax||^2 \le \sum_n \langle x, y_n \rangle^2 = \sum_n \lambda_n^{-2} \langle x, y_n' \rangle^2 = \mu(f_x^2)$$

and A is 2-integral bounded. This proves the first sentence in Theorem 2. Repeating the same proof as in Theorem 1 yields a representation of A in the form

$$Ax = \sum \langle x, y_n \rangle x_n$$

where $\{x_n\} \subseteq B_2$ is 2-summable and

$$\sum \langle x, y_n \rangle^2 = \mu(f_x^2) \le C \|x\|^2.$$

This completes the proof of Theorem 2.

REMARK. It is clear that the results obtained in this paper hold equally well for complex Banach spaces: one has only to replace expressions of the form ()² by $| |^2$ in the theorems and proofs.

The author would like to thank the referee for many helpful suggestions in clarifying the presentation of the paper.

REFERENCES

- 1. I. M. Gelfand and M. Vilenkin, Les Distributions, (Vol. IV), Dunod, Paris, 1968.
- 2. D. Lepingle, Applications p-sommantes; inégalité de Pietsch; factorization. Séminaire L. Schwartz, 1969-1970, Exposé no. 7.
- 3. J. Martin, Une caractérisation des opérateurs de Hilbert-Schmidt, Séminaire L. Schwartz, 1969-1970, Exposé no. 8.
- 4. A. Pietsch, Absolut p-summierende Abbildunger in normierter Räumen, Studia Math. 28 (1967) 333-353.
 - 5. A. Pietsch, Hilbert-Schmidt Abbildungen in Banach Räumen, Math. Nachr. 37 (1968) 237-245.
 - 6. A. Pietsch, p-nukleare und p-integrale Abbildungen, Studia Math. 33 (1969) 19-62.
 - 7. K. Yoshida, Functional Analysis, Springer-Verlag, New York, 1965.

DÉPARTEMENT DE MATHÉMATIQUES, Université de Montréal,

MONTRÉAL, QUÉBEC, CANADA