Published online by Cambridge University Press: 20 November 2018
Let VN(G) be the von Neumann algebra of a locally compact group G. We denote by μ the initial ordinal with |μ| equal to the smallest cardinality of an open basis at the unit of G and X = ﹛α ; α < μ﹜.We show that if G is nondiscrete then there exist an isometric *-isomorphism of l∞(X) into VN(G) and a positive linear mapping π of VN(G) onto l∞(X) such that π o = idl∞(X) and and π have certain additional properties. Let UCB((Ĝ)) be the C*–algebra generated by operators in VN(G) with compact support and F(Ĝ) the space of all T∈ VN(G) such that all topologically invariant means on VN(G) attain the same value at T. The construction of the mapping π leads to the conclusion that the quotient space UCB((Ĝ))/F((Ĝ)) ∪UCB((Ĝ)) has l∞(X) as a continuous linear image if G is nondiscrete. When G is further assumed to be non-metrizable, it is shown that UCB((Ĝ))/F((Ĝ)) ∪UCB((Ĝ)) contains a linear isomorphic copy of l∞(X). Similar results are also obtained for other quotient spaces.