Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:13:00.145Z Has data issue: false hasContentIssue false

Symmetric Tessellations on Euclidean Space-Forms

Published online by Cambridge University Press:  20 November 2018

Michael I. Hartley
Affiliation:
Sepang Institute of Technology, 2112 Jalan Meru, 41050 Klang, Selangor Darul Ehsan, Malaysia email: [email protected]
Peter McMullen
Affiliation:
University College London, Gower Street, London WC1E 6BT, England email: [email protected]
Egon Schulte
Affiliation:
Northeastern University, Boston, MA 02115, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown here that, for $n\ge 2$, the $n$-torus is the only $n$-dimensional compact euclidean space-form which can admit a regular or chiral tessellation. Further, such a tessellation can only be chiral if $n\,=\,2$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Brehm, U., Kühnel, W. and Schulte, E., Manifold structures on abstract regular polytopes. Aequationes Math. 49(1995), 1235.Google Scholar
[2] Coxeter, H. S. M., Regular Polytopes. 3rd edn, Dover, New York, 1973.Google Scholar
[3] Coxeter, H. S. M. and Moser, W. O. J., Generators and Relations for Discrete Groups. 4th edn, Springer, 1980.Google Scholar
[4] Davis, M. W., Regular convex cell complexes. In: Geometry and Topology (eds. McCrory, C. and Shifrin, T.), Lecture Notes in Pure and Appl. Math. 105, Marcel Dekker, New York-Basel, 1987, 5388.Google Scholar
[5] Dress, A. W. M. and Schulte, E., On a theorem of McMullen about combinatorially regular polytopes. Simon Stevin 61(1987), 265273.Google Scholar
[6] Edmonds, A. L., Ewing, J. H. and Kulkarni, R. S., Regular tessellations of surfaces and (p, q, 2)-triangle groups. Ann. of Math. 116(1982), 113132.Google Scholar
[7] Garbe, D., Über die regulären Zerlegungen geschlossener orientierbarer Flächen. J. Reine Angew. Math. 237(1969), 3955.Google Scholar
[8] Gromov, M., Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56(1982), 599.Google Scholar
[9] Grünbaum, B., Regularity of graphs, complexes and designs. In: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS 260 (Orsey, 1977), 191197.Google Scholar
[10] Hartley, M. I., Combinatorially Regular Euler Polytopes. Ph.D. Thesis, University of Western Australia (Nedlands, Perth, 1996).Google Scholar
[11] Kato, M., On combinatorial space-forms. Sci. Papers College Gen. Ed. Univ. Tokyo 30(1980), 107146.Google Scholar
[12] McMullen, P., Combinatorially regular polytopes. Mathematika 14(1967), 142150.Google Scholar
[13] McMullen, P., On the Combinatorial Structure of Convex Polytopes. Ph.D. Thesis, University of Birmingham (1968).Google Scholar
[14] McMullen, P. and Schulte, E., Quotients of polytopes and C-groups. Discrete Comput. Geom. 11(1994), 453464.Google Scholar
[15] McMullen, P. and Schulte, E., Higher toroidal regular polytopes. Adv. Math. 117(1996), 1751.Google Scholar
[16] McMullen, P. and Schulte, E., Abstract Regular Polytopes. Monograph in preparation.Google Scholar
[17] Schulte, E. and Weiss, A. I., Chiral polytopes. In: Applied Geometry and Discrete Mathematics (The Klee Festschrift) (eds. Gritzmann, P. and Sturmfels, B.), Ser. DiscreteMath. Theoret. Comput. Sci. 4, Amer.Math. Soc., 1991, 493516.Google Scholar
[18] Sherk, F. A., The regular maps on a surface of genus three. Canad. J. Math. 11(1959), 452480.Google Scholar
[19] Wilson, S. E., Non-orientable regular maps. Ars Combin. 5(1978), 213218.Google Scholar
[20] Wolf, J. A., Spaces of Constant Curvature. 5th edn, Publish or Perish, Wilmington, Delaware, 1984.Google Scholar