Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T01:06:09.032Z Has data issue: false hasContentIssue false

Sur la structure transverse à une orbite nilpotente adjointe

Published online by Cambridge University Press:  20 November 2018

Hervé Sabourin*
Affiliation:
UMR 6086 CNRS, Département de Mathématiques, Téléport 2, BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope-Chasseneuil Cedex, France, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We are interested in Poisson structures transverse to nilpotent adjoint orbits in a complex semi-simple Lie algebra, and we study their polynomial nature. Furthermore, in the case of $s{{l}_{n}}$, we construct some families of nilpotent orbits with quadratic transverse structures.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2005

References

[BE-GO] Bergmann, P. G. et Goldberg, I., Dirac bracket transformations in phase space. Phys. Rev. 98(1955), 531538.Google Scholar
[CU-RO] Cushman, R. et Roberts, M., Poisson structures transverse to coadjoint orbits. Bull. Sci. Math. 126(2002), 525534.Google Scholar
[DA] Damianou, P. A., Transverse Poisson structures of coadjoint orbits. Bull. Sci. Math. 120(1996), 195214.Google Scholar
[DI] Dixmier, J., Enveloping Algebras. Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI, 1996.Google Scholar
[OH] Oh, Y.-G., Some remarks on the transverse Poisson structures of coadjoint orbits. Lett. Math. Phys. 12(1986), 8791.Google Scholar
[PA1] Panyushev, D., On spherical nilpotent orbits and beyond. Ann. Inst. Fourier (Grenoble) 49(1999), 14531476.Google Scholar
[PA2] Panyushev, D., Complexity and rank of actions in invariant theory. J. Math. Science (New York) 95(1999), 19251985.Google Scholar
[RA] Raïs, M., La représentation coadjointe du groupe affine. Ann. Inst. Fourier (Grenoble) 28(1978), 207237.Google Scholar
[RO] Roberts, M., Wulff, C., et Lamb, J. S. W., Hamiltonian systems near relative equilibria. J. Differential Equations 179(2002), 562604.Google Scholar
[SG] Saint-Germain, M., Poisson algebras and transverse structures. Geom, J.. Phys. 31(1999), 153194.Google Scholar
[SL] Slodowy, P., Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics 815, Springer-Verlag, Berlin, 1980.Google Scholar
[SP-ST] Springer, T. A. et Steinberg, R., Conjugacy classes. Dans : Seminar on Algebraic Groups and Related Finite Groups, éd. Borel, A., et al., Lecture Notes in Mathematics 131, Springer, Berlin, 1970, pp. 167266.Google Scholar
[WE] A.Weinstein, Local structure of Poisson manifolds. J. Differential Geom. 18(1986), 523557.Google Scholar