No CrossRef data available.
Article contents
The Strong ϕ Topology on Symmetric Sequence Spaces
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The strong ϕ topology. Let S be a linear space of real sequences written in functional notation
There is a natural duality between S and the space ϕ of sequences which are eventually ϕ given by the equation
The series has only a finite number of nonzero terms since t is in ϕ.
A subset B of ϕ is called S-bounded if
for each s in S.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1985
References
1.
Bourbaki, N., Eléments de mathématique, Livre V, Espaces vectouriels topologiques, 2 Vols. Act. Sci. et Ind. V 1189, 1229 (1953, 55).Google Scholar
2.
Köthe, G., Topological vector spaces I
Grundleheren d. Math. Wissen.
159 (Springer, New York, Berlin, Heidelberg, 1969).Google Scholar
3.
Köthe, G. and Toeplitz, O., Lineare Raume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. f. Math.
171 (1934), 193–226.Google Scholar
4.
Garling, D. J. H., On symmetric sequence spaces, Proceedings of the London Math. Soc, (3) 76 (1966), 85–106.Google Scholar
5.
Garling, D. J. H., Symmetric bases of locally convex spaces, Studia Mathematica
30 (1968), 164–181.Google Scholar
6.
Garling, D. J. H., A class of reflexive symmetric BK-spaces, Can. J. Math.
21 (1969), 602–608.Google Scholar
7.
Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I, sequence spaces (Springer, Berlin, Heidelberg, New York, 1977).Google Scholar
8.
Ruckle, W. H., Symmetric coordinate spaces and symmetric bases, Can. J. Math.
19 (1967), 828–838.Google Scholar
9.
Ruckle, W. H., On perfect symmetric sequence spaces, Math. Annalen
175 (1968), 121–126.Google Scholar
10.
Ruckle, W. H., FK-spaces in which the sequence of coordinate vectors is bounded, Can. J. Math.
25 (1973), 973–978.Google Scholar
11.
Ruckle, W. H., Representation and series summability of complete biorthogonal sequences, Pacific J. Math.
34 (1910), 511–528.Google Scholar
14.
Singer, I., Bases in Banach spaces II (Springer, Berlin, Heidelberg, New York,
1981).CrossRefGoogle Scholar
You have
Access