Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T01:18:20.619Z Has data issue: false hasContentIssue false

Square-free Values of Decomposable Forms

Published online by Cambridge University Press:  20 November 2018

Stanley Yao Xiao*
Affiliation:
Mathematical Institute, University of Oxford, Oxford, UK, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove that decomposable forms, or homogeneous polynomials $F\left( {{x}_{1}}\,,\,.\,.\,.\,,\,{{x}_{n}} \right)$ with integer coefficients that split completely into linear factors over $\mathbb{C}$, take on infinitely many square-free values subject to simple necessary conditions, and they have $\text{deg}\,f\,\le \,2n\,+\mid 2$ for all irreducible factors $f$ of $F$. This work generalizes a theorem of Greaves.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Bhargava, M. and Shankar, A., Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. Ann. of Math. 181 (2015), 191242. http://dx.doi.org/10.4007/annals.2015.181.13Google Scholar
[2] Bhargava, M., Shankar, A., and Wang, X., Squarefree values of polynomial discriminants I. arxiv:1 611.09806Google Scholar
[3] Browning, T. D., Quantitative arithmetic on protective varieties. Progress in Mathematics, 277, Birkhâuser Verlag, Basel, 2009.Google Scholar
[4] Ekedahl, T., An infinite version of the Chinese remainder theorem. Comment. Math. Univ. St. Paul. 40 (1991), 5359.Google Scholar
[5] Erdôs, P., Arithmetical properties of polynomials. J. London Math. Soc. 28 (1953), 416425. http://dx.doi.Org/10.1112/jlms/s1-28.4.416Google Scholar
[6] Estermann, T., Einige Satze uber quadratfeie Zahlen. Math. Ann. 105 (1931), 653662. http://dx.doi.Org/10.1007/BF01455836Google Scholar
[7] Granville, A., ABC allows us to count squarefrees. Internat. Math. Res. Notices 9 (1998), 9911009.Google Scholar
[8] Greaves, G., Power-free values of binary forms. Quart. J. Math Oxford Ser. (2) 43 (1992), 4565. http://dx.doi.Org/10.1093/qmath/43.1.45Google Scholar
[9] Heath-Brown, D. R., Diophantine approximation with squarefree numbers. Math. Z. 187 (1984), 335344. http://dx.doi.org/10.1007/BF01161951Google Scholar
[10] Helfgott, H. A., Power-free values, large deviations, and integer points on irrational curves. J. Théor. Nombres Bordeaux 19 (2007), 433472. http://dx.doi.Org/10.58O2/jtnb.596Google Scholar
[11] Hooley, C., On the power free values of polynomials. Mathematika 14 (1967), 2126. http://dx.doi.Org/10.1112/S002557930000797XGoogle Scholar
[12] Hooley, C., On the power-free values of polynomials in two variables. In: Analytic number theory, Cambridge University Press, Cambridge, 2009, pp. 235266.Google Scholar
[13] Hooley, C., On the power-free values of polynomials in two variables. II. J. Number Theory 129 (2009), 14431455. http://dx.doi.Org/10.1 01 6/j.jnt.2 008.1 2.006Google Scholar
[14] Huxley, M. N. and Nair, M., Power free values of polynomials. III. Proc. London Math. Soc. 41 (1980), 6682. http://dx.doi.Org/10.1112/plms/s3-41.1.66Google Scholar
[15] Lang, S. and Weil, A., Number of points of varieties over finite fields. Amer. J. Math. 76 (1954), 819827. http://dx.doi.org/! 0.2307/2372655Google Scholar
[16] Maynard, J., Primes represented by incomplete norm forms. arxiv:1507.05080Google Scholar
[17] Poonen, B., Squarefree values of multivariate polynomials. Duke Math. J. 118 (2003), 353373. http://dx.doi.org/10.1215/S0012-7094-03-11826-8Google Scholar
[18] Reuss, T., Power-free values of polynomials. Bull. London Math. Soc. 47 (2015), no. 2, 270284. http://dx.doi.Org/10.1112/blms/bdu11 6Google Scholar
[19] Ricci, G., Riecenche aritmetiche sui polynomials. Rend. Circ. Mat. Palermo 57 (1933), 433475.Google Scholar
[20] Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 6494.Google Scholar
[21] Schmidt, W. M., The number of solutions of norm form equations. Trans. Amer. Math. Soc. 317 (1990), 197227. http://dx.doi.org/10.1090/S0002-9947-1990-0961596-2Google Scholar
[22] Vaaler, J. D., Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. 12 (1985), 183216. http://dx.doi.org/10.1090/S0273-0979-1985-15349-2Google Scholar