Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:02:46.521Z Has data issue: false hasContentIssue false

Semilinear Elliptic Problems with Pairs of Decaying Positive Solutions

Published online by Cambridge University Press:  20 November 2018

Ezzat S. Noussair
Affiliation:
University of New South Wales, Kensington, Australia
Charles A. Swanson
Affiliation:
University of British Columbia, Vancouver, British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our main objective is to prove the existence of a pair of positive, exponentially decaying, classical solutions of the semilinear elliptic eigenvalue problem

1.1

in a smooth unbounded domain Ω ⊂ RN, N ≧ 2, where λ is a positive parameter and L is a uniformly elliptic operator in Ω defined by

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Functional Anal. 14 (1973), 349381.Google Scholar
2. Berestycki, H. and Lions, P. L., Une méthode locale pour l'existence de solutions positives de problèmes semi-linéaires elliptiques dans R N , J. Analyse Math. 38 (1980), 144187.Google Scholar
3. Berestycki, H. and Lions, P. L., Nonlinear scalar field equations, I and II, Arch. Rat. Mech. Anal. 82 (1983), 313375.Google Scholar
4. Gidas, B., Ni, W-M. and Nirenberg, L., Symmetry of positive solutions of nonlinear ellipticequations in R N , Math. Anal. Appl. A, Advances in Mathematics Supplementary Studies 7A (1981), 369402.Google Scholar
5. Jones, C. and K¨pper, T., On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal. 17 (1986), 803835.Google Scholar
6. Lions, P. L., La méthode de concentration — compacité en calcul des variations, Goulaouic-Meyer-Schwartz Seminar, 1982/1983, Exp. No. 14, École Polytech., Palaiseau (1983).Google Scholar
7. Lions, P. L., Applications de la méthode de concentration — compacité à l'existence de fonctions extrémales, C.R. Acad. Sci. Paris Sér. I Math. 296 (1983), 645648.Google Scholar
8. Meyers, N. and Serrin, J., The exterior Dirichlet problem for second order elliptic partial differential equations, J. Math. Mech. 9 (1960), 513538.Google Scholar
9. Noussair, E. S. and Swanson, C. A., Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121133.Google Scholar
10. Noussair, E. S. and Swanson, C. A., Global positive solutions of semilinear elliptic problems, Pacific J. Math. 115 (1984), 177192.Google Scholar
11. Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149162.Google Scholar