No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We prove that if φ is an (anti-) automorphism of a ring R with finite orbits on R, or integral over the integers, and if R contains a finite maximal φ-invariant subring, then R must be finite. Special cases are when φ has finite order or is an involution. Two corollaries are that R must be finite when R contains only finitely many φ-invariant subrings or has both ascending and descending chain conditions on φ invariant subrings. These generalize results in the literature for the special case when φ = idR.