Published online by Cambridge University Press: 20 November 2018
Let $G$ be a solvable exponential Lie group. We characterize all the continuous topologically irreducible bounded representations $(T,\mathcal{U})$ of $G$ on a Banach space $\mathcal{U}$ by giving a $G$-orbit in ${{n}^{*}}$ ($\mathfrak{n}$ being the nilradical of $\mathfrak{g}$), a topologically irreducible representation of ${{L}^{1}}({{\mathbb{R}}^{n}},\,\,\omega )$ , for a certain weight $\omega $ and a certain $n\,\in \,\mathbb{N}$, and a topologically simple extension norm. If $G$ is not symmetric, i.e., if the weight $\omega $ is exponential, we get a new type of representations which are fundamentally different from the induced representations.
Soit $G$ un groupe de Lie résoluble exponentiel. Nous caractérisons toutes les représentations $(T,\mathcal{U})$ continues bornées topologiquement irréductibles de $G$ dans un espace de Banach $\mathcal{U}$ à l’aide d’une $G$-orbite dans ${{n}^{*}}$ ($\mathfrak{n}$ étant le radical nilpotent de $\mathfrak{g}$), d’une représentation topologiquement irréductible de ${{L}^{1}}({{\mathbb{R}}^{n}},\,\,\omega )$, pour un certain poids $\omega $ et un certain $n\,\in \,\mathbb{N}$, d’une norme d’extension topologiquement simple. Si $G$ n’est pas symétrique, c. à d. si le poids $\omega $ est exponentiel, nous obtenons un nouveau type de représentations qui sont fondamentalement différentes des représentations induites.