Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T14:22:31.444Z Has data issue: false hasContentIssue false

Primary Ideals in Prüfer Domains

Published online by Cambridge University Press:  20 November 2018

Jack Ohm*
Affiliation:
University of Wisconsin, Madison, Wisconsin and Louisiana State University, Baton Rouge, Louisiana
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Prüfer domain is an integral domain D with the property that for every proper prime ideal P of D the quotient ring DP is a valuation ring. Examples of such domains are valuation rings and Dedekind domains, a Dedekind domain being merely a noetherian Prüfer domain. The integral closure of the integers in an infinite algebraic extension of the rationals is another example of a Prüfer domain (5, p. 555, Theorem 8). This third example has been studied initially by Krull (4) and then by Nakano (8).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Bourbaki, N., Algèbre commutative, Chap. 7 (Paris, 1965).Google Scholar
2. Gilmer, R., The cancellation law for ideals in a commutative ring., Can. J. Math., 17 (1965), 281287.Google Scholar
3. Gilmer, R. and Ohm, J., Primary ideals and valuation ideals, Trans. Amer. Math. Soc., 117 (1965), 237250.Google Scholar
4. Krull, W., Idealtheorie in unendlichen algebraischen Zahlkörpern. Math. Z., 29 (1929), 4254; II, loc. cit., 31 (1930), 527-557.Google Scholar
5. Krull, W., Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Z., 41 (1936), 545569.Google Scholar
6. Krull, W., Idealtheorie (New York, 1948).Google Scholar
7. Krull, W., Nagata, M., Local rings (New York, 1962).Google Scholar
8. Nakano, N., Unendliche algebraische Zahlkörper, J. Sci. Hiroshima Univ., (a) 15 (1952), 171175; (b) 16 (1953), 425-439; (c) 17 (1953), 11-20; (d) 17 (1954), 321-343; (e) 18 (1954), 129-136; (f) 18 (1955), 257-269; (g) 18 (1955), 271-287; (h) 19 (1955), 239-253; (i) 19 (1956), 439-455; (j) 20 (1956), p. 47.Google Scholar
9. Schilling, O. F. G., The theory of valuations (Providence, 1950).Google Scholar
10. Zariski, O. and Samuel, P., Commutative algebra, Vol. 1 (Princeton, 1958).Google Scholar
11. Zariski, O. and Samuel, P., Commutative algebra, Vol. 2 (Princeton, 1960).Google Scholar