Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T15:13:09.708Z Has data issue: false hasContentIssue false

On the Steinberg Map and Steinberg Cross-Section for a Symmetrizable Indefinite Kac-Moody Group

Published online by Cambridge University Press:  20 November 2018

Claus Mokler*
Affiliation:
Mathematisches Institut, Universität Freiburg, Eckerstraße 1, D-79104 Freiburg, Germany. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a symmetrizable indefinite Kac-Moody group over $\mathbb{C}$. Let $\text{T}{{\text{r}}_{{{\Lambda }_{1}}\,,\ldots ,\,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}}$ be the characters of the fundamental irreducible representations of $G$, defined as convergent series on a certain part ${{G}^{\text{tr}-\text{alg}}}\,\subseteq \,G$. Following Steinberg in the classical case and Brüchert in the affine case, we define the Steinberg map $\chi \,:=\,\left( \text{T}{{\text{r}}_{{{\Lambda }_{1}},\ldots ,}}\text{T}{{\text{r}}_{{{\Lambda }_{2n-l}}}} \right)$ as well as the Steinberg cross section $C$, together with a natural parametrisation $\omega :{{\mathbb{C}}^{n}}\times {{\left( {{\mathbb{C}}^{\times }} \right)}^{n-l}}\to C$. We investigate the local behaviour of $\text{ }\!\!\chi\!\!\text{ }$ on $C$ near $\omega \left( \,\left( 0,\ldots 0 \right)\,\times \,\left( 1,\ldots ,1 \right)\, \right)$, and we show that there exists a neighborhood of $\left( 0,...,0 \right)\,\,\times \,\,\left( 1,...,1 \right)$, on which $\text{ }\!\!\chi\!\!\text{ }\,\circ \,\omega $ is a regular analytical map, satisfying a certain functional identity. This identity has its origin in an action of the center of $G$ on $C$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[B] Brüchert, G., Trace class elements and cross-sections in Kac-Moody groups. Canad. J. Math. 50(1998), 9721006.Google Scholar
[H,Sl] Helmke, S. and Slodowy, P., Loop Groups, Principal Bundles over Elliptic Curves and Elliptic Singularities. Abstracts of the AnnualMeeting of the Mathematical Society of Japan, Hiroshima, September 1999, Session: ‘Infinite dimensional Analysis’, 67–77.Google Scholar
[K] Kac, V. G., Infinite dimensional Lie algebras,. Cambridge University Press, 1990.Google Scholar
[K,P1] Kac, V. G. and Peterson, D. H., Infinite flag varieties and conjugacy theorems. Proc. Nat. Acad. Sci. USA 80(1983), 17781782.Google Scholar
[K,P2] Kac, V. G. and Peterson, D. H., Defining relations on certain infinite-dimensional groups. Proceedings of the Cartan conference, Lyon 1984, Astérisque, 1985, Numéro hors serie, 165–208.Google Scholar
[M] Mokler, C., A formal Chevalley restriction theorem for Kac-Moody groups. Compositio Math., to appear.Google Scholar
[Mo,Pi] Moody, R. V. and Pianzola, A., Lie AlgebrasWith Triangular Decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1995.Google Scholar
[Sl 1] Slodowy, P., Simple singularities and simple algebraic groups. Springer Lecture Notes in Math. 815, 1980.Google Scholar
[Sl 2] Slodowy, P., A character approach to Looijenga's invariant theory for generalized root systems. Compositio Math. 55(1985), 332.Google Scholar
[Sl 3] Slodowy, P., An adjoint quotient for certain groups attached to Kac-Moody algebras. In: Infinite-dimensional groups with applications, Math. Sci. Res. Inst. Publ. 4, Springer, 1985, 307334.Google Scholar
[St] Steinberg, Robert, Regular Elements of Semisimple Algebraic Groups. Inst. Hautes Études Sci. Publ. Math. 25(1965), 4980.Google Scholar
[Ti] Tits, J., Uniqueness and Presentation of Kac-Moody Groups over fields. J. Algebra 105(1987), 542573.Google Scholar