Article contents
Necessary and Sufficient Conditions for the Equality of L(f) and l1
Published online by Cambridge University Press: 20 November 2018
Extract
Introduction. Let f be a modulus, ei = (δij) and E = {ei, i = 1, 2, …}. The L(f) spaces were created (to the best of our knowledge) by W. Ruckle in [2] in order to construct an example to answer a question of A. Wilansky. It turned out that these spaces are interesting spaces. For example lp, 0 < p ≦ 1 is an L(f) space with f(x) = xp, and every FK space contains an L(f) space [2]. A natural question is: For which f is L(f) a locally convex space? It is known that L(f) ⊆ l1, for all f modulus (see [2]), and l1 is the smallest locally convex FK space in which E is bounded (see [1]). Thus the question becomes: For which f does L(f) equal l1? In this paper we characterize such f. (An FK space need not be locally convex here.) We also characterize those f for which L(f) contains a convex ball. The final result of this paper is to show that if f satisfies f(x · y) ≦ f(x) · f(y) and L(f) ≠ l1 then L(f) contains no infinite dimensional subspace isomorphic to a Banach space.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1982
References
- 1
- Cited by